基于纳什均衡的密度空间聚类与网格搜索的结合

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Uranus Kazemi, Seyfollah Soleimani
{"title":"基于纳什均衡的密度空间聚类与网格搜索的结合","authors":"Uranus Kazemi,&nbsp;Seyfollah Soleimani","doi":"10.1002/eng2.70037","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel clustering approach that enhances the traditional Density-Based Spatial Clustering of Applications with Noise (<i>DBSCAN</i>) algorithm by integrating a grid search method and Nash Equilibrium principles and addresses the limitations of <i>DBSCAN</i> parameterization, particularly its inefficiency with big data. The use of Nash equilibrium allows the identification of clusters with different densities and the determination of <i>DBSCAN</i> parameters and the selection of cells from the network, and significantly improves the efficiency and accuracy of the clustering process. The proposed method divides data into grid cells, applies <i>DBSCAN</i> to each cell, and then merges smaller clusters, capitalizing on dynamic parameter calculation and reduced computational complexity. The performance of the proposed method was assessed over 3 big-size and 11 middle-size datasets. The achieved results implied the superiority of the proposed method to <i>DBSCAN</i>, <i>ST-DBSCAN</i>, <i>P-DBSCAN</i>, <i>GCBD</i>, and <i>CAGS</i> methods in terms of clustering accuracy (purity) and processing time.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70037","citationCount":"0","resultStr":"{\"title\":\"Combination of Density-Based Spatial Clustering With Grid Search Using Nash Equilibrium\",\"authors\":\"Uranus Kazemi,&nbsp;Seyfollah Soleimani\",\"doi\":\"10.1002/eng2.70037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a novel clustering approach that enhances the traditional Density-Based Spatial Clustering of Applications with Noise (<i>DBSCAN</i>) algorithm by integrating a grid search method and Nash Equilibrium principles and addresses the limitations of <i>DBSCAN</i> parameterization, particularly its inefficiency with big data. The use of Nash equilibrium allows the identification of clusters with different densities and the determination of <i>DBSCAN</i> parameters and the selection of cells from the network, and significantly improves the efficiency and accuracy of the clustering process. The proposed method divides data into grid cells, applies <i>DBSCAN</i> to each cell, and then merges smaller clusters, capitalizing on dynamic parameter calculation and reduced computational complexity. The performance of the proposed method was assessed over 3 big-size and 11 middle-size datasets. The achieved results implied the superiority of the proposed method to <i>DBSCAN</i>, <i>ST-DBSCAN</i>, <i>P-DBSCAN</i>, <i>GCBD</i>, and <i>CAGS</i> methods in terms of clustering accuracy (purity) and processing time.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的聚类方法,该方法通过集成网格搜索方法和纳什均衡原理,增强了传统的基于密度的带噪声应用空间聚类(DBSCAN)算法,并解决了DBSCAN参数化的局限性,特别是在处理大数据时效率低下。利用纳什均衡可以识别不同密度的簇,确定DBSCAN参数并从网络中选择单元,显著提高了聚类过程的效率和准确性。该方法将数据划分为网格单元,对每个网格单元应用DBSCAN,然后合并较小的簇,利用动态参数计算,降低了计算复杂度。在3个大型数据集和11个中型数据集上对该方法的性能进行了评估。结果表明,该方法在聚类精度(纯度)和处理时间方面优于DBSCAN、ST-DBSCAN、P-DBSCAN、GCBD和CAGS方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combination of Density-Based Spatial Clustering With Grid Search Using Nash Equilibrium

Combination of Density-Based Spatial Clustering With Grid Search Using Nash Equilibrium

This paper introduces a novel clustering approach that enhances the traditional Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm by integrating a grid search method and Nash Equilibrium principles and addresses the limitations of DBSCAN parameterization, particularly its inefficiency with big data. The use of Nash equilibrium allows the identification of clusters with different densities and the determination of DBSCAN parameters and the selection of cells from the network, and significantly improves the efficiency and accuracy of the clustering process. The proposed method divides data into grid cells, applies DBSCAN to each cell, and then merges smaller clusters, capitalizing on dynamic parameter calculation and reduced computational complexity. The performance of the proposed method was assessed over 3 big-size and 11 middle-size datasets. The achieved results implied the superiority of the proposed method to DBSCAN, ST-DBSCAN, P-DBSCAN, GCBD, and CAGS methods in terms of clustering accuracy (purity) and processing time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信