Sabah Abdulazeez Jebur, Laith Alzubaidi, Ahmed Saihood, Khalid A. Hussein, Haider Kadhim Hoomod, YuanTong Gu
{"title":"一种用于监控视频异常检测的可扩展和广义深度学习框架","authors":"Sabah Abdulazeez Jebur, Laith Alzubaidi, Ahmed Saihood, Khalid A. Hussein, Haider Kadhim Hoomod, YuanTong Gu","doi":"10.1155/int/1947582","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Anomaly detection in videos is challenging due to the complexity, noise, and diverse nature of activities such as violence, shoplifting, and vandalism. While deep learning (DL) has shown excellent performance in this area, existing approaches have struggled to apply DL models across different anomaly tasks without extensive retraining. This repeated retraining is time-consuming, computationally intensive, and unfair. To address this limitation, a new DL framework is introduced in this study, consisting of three key components: transfer learning to enhance feature generalization, model fusion to improve feature representation, and multitask classification to generalize the classifier across multiple tasks without training from scratch when a new task is introduced. The framework’s main advantage is its ability to generalize without requiring retraining from scratch for each new task. Empirical evaluations demonstrate the framework’s effectiveness, achieving an accuracy of 97.99% on the RLVS (violence detection), 83.59% on the UCF dataset (shoplifting detection), and 88.37% across both datasets using a single classifier without retraining. Additionally, when tested on an unseen dataset, the framework achieved an accuracy of 87.25% and 79.39% on violence and shoplifting datasets, respectively. The study also utilises two explainability tools to identify potential biases, ensuring robustness and fairness. This research represents the first successful resolution of the generalization issue in anomaly detection, marking a significant advancement in the field.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1947582","citationCount":"0","resultStr":"{\"title\":\"A Scalable and Generalised Deep Learning Framework for Anomaly Detection in Surveillance Videos\",\"authors\":\"Sabah Abdulazeez Jebur, Laith Alzubaidi, Ahmed Saihood, Khalid A. Hussein, Haider Kadhim Hoomod, YuanTong Gu\",\"doi\":\"10.1155/int/1947582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Anomaly detection in videos is challenging due to the complexity, noise, and diverse nature of activities such as violence, shoplifting, and vandalism. While deep learning (DL) has shown excellent performance in this area, existing approaches have struggled to apply DL models across different anomaly tasks without extensive retraining. This repeated retraining is time-consuming, computationally intensive, and unfair. To address this limitation, a new DL framework is introduced in this study, consisting of three key components: transfer learning to enhance feature generalization, model fusion to improve feature representation, and multitask classification to generalize the classifier across multiple tasks without training from scratch when a new task is introduced. The framework’s main advantage is its ability to generalize without requiring retraining from scratch for each new task. Empirical evaluations demonstrate the framework’s effectiveness, achieving an accuracy of 97.99% on the RLVS (violence detection), 83.59% on the UCF dataset (shoplifting detection), and 88.37% across both datasets using a single classifier without retraining. Additionally, when tested on an unseen dataset, the framework achieved an accuracy of 87.25% and 79.39% on violence and shoplifting datasets, respectively. The study also utilises two explainability tools to identify potential biases, ensuring robustness and fairness. This research represents the first successful resolution of the generalization issue in anomaly detection, marking a significant advancement in the field.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1947582\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/1947582\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/1947582","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Scalable and Generalised Deep Learning Framework for Anomaly Detection in Surveillance Videos
Anomaly detection in videos is challenging due to the complexity, noise, and diverse nature of activities such as violence, shoplifting, and vandalism. While deep learning (DL) has shown excellent performance in this area, existing approaches have struggled to apply DL models across different anomaly tasks without extensive retraining. This repeated retraining is time-consuming, computationally intensive, and unfair. To address this limitation, a new DL framework is introduced in this study, consisting of three key components: transfer learning to enhance feature generalization, model fusion to improve feature representation, and multitask classification to generalize the classifier across multiple tasks without training from scratch when a new task is introduced. The framework’s main advantage is its ability to generalize without requiring retraining from scratch for each new task. Empirical evaluations demonstrate the framework’s effectiveness, achieving an accuracy of 97.99% on the RLVS (violence detection), 83.59% on the UCF dataset (shoplifting detection), and 88.37% across both datasets using a single classifier without retraining. Additionally, when tested on an unseen dataset, the framework achieved an accuracy of 87.25% and 79.39% on violence and shoplifting datasets, respectively. The study also utilises two explainability tools to identify potential biases, ensuring robustness and fairness. This research represents the first successful resolution of the generalization issue in anomaly detection, marking a significant advancement in the field.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.