上颌后牙置入短平台种植体的预后

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Vladislav Demenko, Igor Linetskiy, Larysa Linetska, Michael Sutcliffe, Andrii Kondratiev
{"title":"上颌后牙置入短平台种植体的预后","authors":"Vladislav Demenko,&nbsp;Igor Linetskiy,&nbsp;Larysa Linetska,&nbsp;Michael Sutcliffe,&nbsp;Andrii Kondratiev","doi":"10.1002/cnm.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Crestal placement of short plateau implants in compromised jaws may cause implant failure due to bone overstress. The aim was to evaluate the impact of different sized implants on adjacent bone overload and the implant load-bearing ability in terms of the proposed index—ultimate functional load (UFL). Three-dimensional models of osseointegrated implants placed in types III and IV bone were analysed by the FEM for the case of patient-specific variations in cortical bone elasticity modulus. Maximum von Mises stresses in surrounding bone were calculated and compared with the cortical and cancellous bone ultimate strength characteristics to determine the UFL index for the studied implants. The implant UFL magnitudes were influenced by their dimensions, bone elasticity, and quality. The implant load-bearing ability was predetermined by cancellous bone strength. The maxilla with moderate elasticity modulus allows for the placement of wide short screwless implants in the compromised maxilla molar site with good clinical perspective.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prognosis of Crestally Placed Short Plateau Implants in Posterior Maxilla\",\"authors\":\"Vladislav Demenko,&nbsp;Igor Linetskiy,&nbsp;Larysa Linetska,&nbsp;Michael Sutcliffe,&nbsp;Andrii Kondratiev\",\"doi\":\"10.1002/cnm.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Crestal placement of short plateau implants in compromised jaws may cause implant failure due to bone overstress. The aim was to evaluate the impact of different sized implants on adjacent bone overload and the implant load-bearing ability in terms of the proposed index—ultimate functional load (UFL). Three-dimensional models of osseointegrated implants placed in types III and IV bone were analysed by the FEM for the case of patient-specific variations in cortical bone elasticity modulus. Maximum von Mises stresses in surrounding bone were calculated and compared with the cortical and cancellous bone ultimate strength characteristics to determine the UFL index for the studied implants. The implant UFL magnitudes were influenced by their dimensions, bone elasticity, and quality. The implant load-bearing ability was predetermined by cancellous bone strength. The maxilla with moderate elasticity modulus allows for the placement of wide short screwless implants in the compromised maxilla molar site with good clinical perspective.</p>\\n </div>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70025\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

短平台种植体在受损颌骨的嵴放置可能由于骨过度应力导致种植体失败。目的是评估不同大小的种植体对相邻骨负荷的影响,以及根据拟议的指数-极限功能负荷(UFL)评估种植体承重能力。在III型和IV型骨中放置骨整合种植体的三维模型,通过FEM分析患者皮质骨弹性模量的具体变化情况。计算周围骨的最大von Mises应力,并将其与皮质骨和松质骨的极限强度特征进行比较,以确定所研究种植体的UFL指数。种植体UFL大小受其尺寸、骨弹性和质量的影响。植体承重能力由松质骨强度决定。上颌弹性模量适中,可在上颌磨牙受损部位放置宽短无螺钉种植体,具有良好的临床前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prognosis of Crestally Placed Short Plateau Implants in Posterior Maxilla

Crestal placement of short plateau implants in compromised jaws may cause implant failure due to bone overstress. The aim was to evaluate the impact of different sized implants on adjacent bone overload and the implant load-bearing ability in terms of the proposed index—ultimate functional load (UFL). Three-dimensional models of osseointegrated implants placed in types III and IV bone were analysed by the FEM for the case of patient-specific variations in cortical bone elasticity modulus. Maximum von Mises stresses in surrounding bone were calculated and compared with the cortical and cancellous bone ultimate strength characteristics to determine the UFL index for the studied implants. The implant UFL magnitudes were influenced by their dimensions, bone elasticity, and quality. The implant load-bearing ability was predetermined by cancellous bone strength. The maxilla with moderate elasticity modulus allows for the placement of wide short screwless implants in the compromised maxilla molar site with good clinical perspective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信