{"title":"探索盐洞中微生物动力学的潜在储氢用途","authors":"Nicole Dopffel, Kyle Mayers, Abduljelil Kedir, Biwen Annie An-Stepec, Janiche Beeder, Silvan Hoth","doi":"10.1111/1758-2229.70064","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen storage in salt caverns is important for supporting the energy transition. However, there is limited knowledge about microbial communities within these caverns and associated risks of hydrogen loss. In this study we characterised a salt-saturated brine from a salt cavern and found a high sulphate content (4.2 g/L) and low carbon content (84.9 mg/L inorganic, 7.61 mg/L organic). The brine contained both Bacteria and Archaea, and 16S rRNA gene analysis revealed a halophilic community with members of <i>Acetohalobium</i>, <i>Thiohalorhabdus</i>, <i>Salinibacter</i> and up to 40% of unknown sequences. Within the Archaea, Euryarchaeota and the symbiotic Nanohaloarcheaota were dominant. Growth experiments showed that some microbes are resistant to autoclaving and pass through 0.22 μm filters. <i>Heyndrickxia</i>-related colonies grew on aerobic plates up to 10% salt, indicating the presence of inactive spores. The highest anaerobic activity was observed at 30°C, including glucose- and yeast extract fermentation, hydrogen-oxidation, lactate-utilisation, methane- and acetate-formation and sulphate-reduction, which was observed up to 80°C. However, microbial activity was slow, with incubations taking up to 1 year to measure microbial products. This study indicates that artificial salt caverns are an extreme environment containing potential hydrogen-consuming microbes.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70064","citationCount":"0","resultStr":"{\"title\":\"Exploring Microbiological Dynamics in a Salt Cavern for Potential Hydrogen Storage Use\",\"authors\":\"Nicole Dopffel, Kyle Mayers, Abduljelil Kedir, Biwen Annie An-Stepec, Janiche Beeder, Silvan Hoth\",\"doi\":\"10.1111/1758-2229.70064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen storage in salt caverns is important for supporting the energy transition. However, there is limited knowledge about microbial communities within these caverns and associated risks of hydrogen loss. In this study we characterised a salt-saturated brine from a salt cavern and found a high sulphate content (4.2 g/L) and low carbon content (84.9 mg/L inorganic, 7.61 mg/L organic). The brine contained both Bacteria and Archaea, and 16S rRNA gene analysis revealed a halophilic community with members of <i>Acetohalobium</i>, <i>Thiohalorhabdus</i>, <i>Salinibacter</i> and up to 40% of unknown sequences. Within the Archaea, Euryarchaeota and the symbiotic Nanohaloarcheaota were dominant. Growth experiments showed that some microbes are resistant to autoclaving and pass through 0.22 μm filters. <i>Heyndrickxia</i>-related colonies grew on aerobic plates up to 10% salt, indicating the presence of inactive spores. The highest anaerobic activity was observed at 30°C, including glucose- and yeast extract fermentation, hydrogen-oxidation, lactate-utilisation, methane- and acetate-formation and sulphate-reduction, which was observed up to 80°C. However, microbial activity was slow, with incubations taking up to 1 year to measure microbial products. This study indicates that artificial salt caverns are an extreme environment containing potential hydrogen-consuming microbes.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70064\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70064","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exploring Microbiological Dynamics in a Salt Cavern for Potential Hydrogen Storage Use
Hydrogen storage in salt caverns is important for supporting the energy transition. However, there is limited knowledge about microbial communities within these caverns and associated risks of hydrogen loss. In this study we characterised a salt-saturated brine from a salt cavern and found a high sulphate content (4.2 g/L) and low carbon content (84.9 mg/L inorganic, 7.61 mg/L organic). The brine contained both Bacteria and Archaea, and 16S rRNA gene analysis revealed a halophilic community with members of Acetohalobium, Thiohalorhabdus, Salinibacter and up to 40% of unknown sequences. Within the Archaea, Euryarchaeota and the symbiotic Nanohaloarcheaota were dominant. Growth experiments showed that some microbes are resistant to autoclaving and pass through 0.22 μm filters. Heyndrickxia-related colonies grew on aerobic plates up to 10% salt, indicating the presence of inactive spores. The highest anaerobic activity was observed at 30°C, including glucose- and yeast extract fermentation, hydrogen-oxidation, lactate-utilisation, methane- and acetate-formation and sulphate-reduction, which was observed up to 80°C. However, microbial activity was slow, with incubations taking up to 1 year to measure microbial products. This study indicates that artificial salt caverns are an extreme environment containing potential hydrogen-consuming microbes.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.