Nuo Chen, Zinian Zhang, Hangzhen Lan, Huamao Wei, Shuai Zhi, Liwei Liu
{"title":"napyradomycin家族:结构、生物活性和生物合成途径","authors":"Nuo Chen, Zinian Zhang, Hangzhen Lan, Huamao Wei, Shuai Zhi, Liwei Liu","doi":"10.1007/s00203-025-04291-6","DOIUrl":null,"url":null,"abstract":"<div><p>Napyradiomycins (NPDs), a family of structurally diverse terpenoids isolated from <i>Streptomyces</i>, have attracted significant scientific interest due to their unique halogenation patterns and potent bioactivities. Since identifying the first member from <i>Streptomyces</i> in 1986, over 50 NPDs have been characterized, demonstrating remarkable efficacy against drug-resistant bacteria and cancer cells, making them promising candidates for novel drug development. In this review, we provided an in-depth exploration of the complex chemical structure of NPDs, their diverse bioactivities, and the biosynthetic pathways involved in their formation. In particular, we collectively concluded the structure-activity relationship data to highlight the importance of the molecular features of napyradiomycins determining their therapeutic potential. Recent discoveries have shed light on the unique role of halogenases, which contribute to the structural diversity and enhance the biological potency of napyradiomycins, thus refining the known biosynthetic pathways. The data presented here aims to stimulate further research and facilitate the advancement of NPDs toward becoming first-line therapies for infectious diseases and cancer.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights for napyradiomycin family: structures, bioactivities and biosynthetic pathways\",\"authors\":\"Nuo Chen, Zinian Zhang, Hangzhen Lan, Huamao Wei, Shuai Zhi, Liwei Liu\",\"doi\":\"10.1007/s00203-025-04291-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Napyradiomycins (NPDs), a family of structurally diverse terpenoids isolated from <i>Streptomyces</i>, have attracted significant scientific interest due to their unique halogenation patterns and potent bioactivities. Since identifying the first member from <i>Streptomyces</i> in 1986, over 50 NPDs have been characterized, demonstrating remarkable efficacy against drug-resistant bacteria and cancer cells, making them promising candidates for novel drug development. In this review, we provided an in-depth exploration of the complex chemical structure of NPDs, their diverse bioactivities, and the biosynthetic pathways involved in their formation. In particular, we collectively concluded the structure-activity relationship data to highlight the importance of the molecular features of napyradiomycins determining their therapeutic potential. Recent discoveries have shed light on the unique role of halogenases, which contribute to the structural diversity and enhance the biological potency of napyradiomycins, thus refining the known biosynthetic pathways. The data presented here aims to stimulate further research and facilitate the advancement of NPDs toward becoming first-line therapies for infectious diseases and cancer.</p></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"207 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-025-04291-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04291-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Insights for napyradiomycin family: structures, bioactivities and biosynthetic pathways
Napyradiomycins (NPDs), a family of structurally diverse terpenoids isolated from Streptomyces, have attracted significant scientific interest due to their unique halogenation patterns and potent bioactivities. Since identifying the first member from Streptomyces in 1986, over 50 NPDs have been characterized, demonstrating remarkable efficacy against drug-resistant bacteria and cancer cells, making them promising candidates for novel drug development. In this review, we provided an in-depth exploration of the complex chemical structure of NPDs, their diverse bioactivities, and the biosynthetic pathways involved in their formation. In particular, we collectively concluded the structure-activity relationship data to highlight the importance of the molecular features of napyradiomycins determining their therapeutic potential. Recent discoveries have shed light on the unique role of halogenases, which contribute to the structural diversity and enhance the biological potency of napyradiomycins, thus refining the known biosynthetic pathways. The data presented here aims to stimulate further research and facilitate the advancement of NPDs toward becoming first-line therapies for infectious diseases and cancer.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.