玄武岩纤维混凝土电阻率预测模型:混合机器学习模型及实验验证

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Zhen Sun, Xin Wang, Ditao Niu, Daming Luo, Tianran Han, Yalin Li, Huang Huang, Zhishen Wu
{"title":"玄武岩纤维混凝土电阻率预测模型:混合机器学习模型及实验验证","authors":"Zhen Sun,&nbsp;Xin Wang,&nbsp;Ditao Niu,&nbsp;Daming Luo,&nbsp;Tianran Han,&nbsp;Yalin Li,&nbsp;Huang Huang,&nbsp;Zhishen Wu","doi":"10.1617/s11527-025-02607-y","DOIUrl":null,"url":null,"abstract":"<div><p>The application of basalt fibre reinforced concrete (BFRC) is crucial for reducing carbon emissions, enhancing structural performance, and extending service life. Electrical resistivity (ER), a non-destructive testing indicator, can be used to evaluate parameters such as compressive strength and chloride ion permeability of concrete. Therefore, this study examines BFRC-ER from three perspectives: the applicability of existing ER prediction models, hybrid machine learning modelling, and experimental validation. The findings indicate that the predicted values of the existing nine models have a poor correlation with actual values, limiting their practical application. The prairie dog–optimised XGBoost (PDO–XGBoost) model developed in this study exhibited closer alignment between predicted and actual values. It boasted smaller mean and standard deviation (<i>μ</i> = 0.0508 kΩ·cm, <i>σ</i> = 3.409) of model error distribution, along with superior performance evaluation metrics (MAE = 2.165, MAPE = 0.243, RMSE = 3.410 MSE = 11.625, and R<sup>2</sup> = 0.984). Analysing the contribution of each input feature to BFRC-ER revealed that saturation, age, and water–binder ratio are the three significant influencing factors. Moreover, this study developed a graphical user interface (GUI) for BFRC-ER, enabling the visualisation of BFRC-ER predictions. Subsequently, BFRC with varying mix proportions was prepared, and BFRC-ER was tested using the two-electrode method. The comparison between actual values and GUI predictions showed errors below 7.5%, highlighting the accuracy of the predictions. This research achieves high-accuracy predictions of BFRC-ER, laying the foundation for optimising BFRC mix proportions and evaluating concrete performance.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical resistivity prediction model for basalt fibre reinforced concrete: hybrid machine learning model and experimental validation\",\"authors\":\"Zhen Sun,&nbsp;Xin Wang,&nbsp;Ditao Niu,&nbsp;Daming Luo,&nbsp;Tianran Han,&nbsp;Yalin Li,&nbsp;Huang Huang,&nbsp;Zhishen Wu\",\"doi\":\"10.1617/s11527-025-02607-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of basalt fibre reinforced concrete (BFRC) is crucial for reducing carbon emissions, enhancing structural performance, and extending service life. Electrical resistivity (ER), a non-destructive testing indicator, can be used to evaluate parameters such as compressive strength and chloride ion permeability of concrete. Therefore, this study examines BFRC-ER from three perspectives: the applicability of existing ER prediction models, hybrid machine learning modelling, and experimental validation. The findings indicate that the predicted values of the existing nine models have a poor correlation with actual values, limiting their practical application. The prairie dog–optimised XGBoost (PDO–XGBoost) model developed in this study exhibited closer alignment between predicted and actual values. It boasted smaller mean and standard deviation (<i>μ</i> = 0.0508 kΩ·cm, <i>σ</i> = 3.409) of model error distribution, along with superior performance evaluation metrics (MAE = 2.165, MAPE = 0.243, RMSE = 3.410 MSE = 11.625, and R<sup>2</sup> = 0.984). Analysing the contribution of each input feature to BFRC-ER revealed that saturation, age, and water–binder ratio are the three significant influencing factors. Moreover, this study developed a graphical user interface (GUI) for BFRC-ER, enabling the visualisation of BFRC-ER predictions. Subsequently, BFRC with varying mix proportions was prepared, and BFRC-ER was tested using the two-electrode method. The comparison between actual values and GUI predictions showed errors below 7.5%, highlighting the accuracy of the predictions. This research achieves high-accuracy predictions of BFRC-ER, laying the foundation for optimising BFRC mix proportions and evaluating concrete performance.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02607-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02607-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

玄武岩纤维增强混凝土(BFRC)的应用对于减少碳排放、提高结构性能和延长使用寿命至关重要。电阻率(ER)是一种无损检测指标,可用于评价混凝土的抗压强度和氯离子渗透性等参数。因此,本研究从现有ER预测模型的适用性、混合机器学习建模和实验验证三个角度对BFRC-ER进行了研究。结果表明,现有9个模型的预测值与实际值相关性较差,限制了模型的实际应用。本研究开发的草原犬优化XGBoost (PDO-XGBoost)模型在预测值和实际值之间表现出更接近的一致性。模型误差分布的均值和标准差更小(μ = 0.0508 kΩ·cm, σ = 3.409),性能评价指标更优(MAE = 2.165, MAPE = 0.243, RMSE = 3.410, MSE = 11.625, R2 = 0.984)。分析各输入特征对BFRC-ER的贡献,发现饱和度、年龄和水胶比是影响BFRC-ER的三个显著因素。此外,本研究开发了BFRC-ER的图形用户界面(GUI),使BFRC-ER预测可视化。随后,制备了不同配比的BFRC,并采用双电极法对BFRC- er进行了测试。实际值和GUI预测之间的比较显示误差低于7.5%,突出了预测的准确性。本研究实现了BFRC- er的高精度预测,为优化BFRC配合比和评价混凝土性能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical resistivity prediction model for basalt fibre reinforced concrete: hybrid machine learning model and experimental validation

The application of basalt fibre reinforced concrete (BFRC) is crucial for reducing carbon emissions, enhancing structural performance, and extending service life. Electrical resistivity (ER), a non-destructive testing indicator, can be used to evaluate parameters such as compressive strength and chloride ion permeability of concrete. Therefore, this study examines BFRC-ER from three perspectives: the applicability of existing ER prediction models, hybrid machine learning modelling, and experimental validation. The findings indicate that the predicted values of the existing nine models have a poor correlation with actual values, limiting their practical application. The prairie dog–optimised XGBoost (PDO–XGBoost) model developed in this study exhibited closer alignment between predicted and actual values. It boasted smaller mean and standard deviation (μ = 0.0508 kΩ·cm, σ = 3.409) of model error distribution, along with superior performance evaluation metrics (MAE = 2.165, MAPE = 0.243, RMSE = 3.410 MSE = 11.625, and R2 = 0.984). Analysing the contribution of each input feature to BFRC-ER revealed that saturation, age, and water–binder ratio are the three significant influencing factors. Moreover, this study developed a graphical user interface (GUI) for BFRC-ER, enabling the visualisation of BFRC-ER predictions. Subsequently, BFRC with varying mix proportions was prepared, and BFRC-ER was tested using the two-electrode method. The comparison between actual values and GUI predictions showed errors below 7.5%, highlighting the accuracy of the predictions. This research achieves high-accuracy predictions of BFRC-ER, laying the foundation for optimising BFRC mix proportions and evaluating concrete performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信