A. S. Karyagina, V. G. Bogush, P. A. Orlova, L. I. Davydova, A. V. Zhulina, T. M. Grunina, N. V. Strukova, M. S. Generalova, M. S. Krivozubov, S. E. Cheperegin, A. A. Ramonova, A. V. Gromov
{"title":"以硅酸钙镁陶瓷透华苷为载体的重组BMP-2和重组rS1/9蜘蛛蛋白为支架的杂交植入物:小鼠开颅模型的修复性成骨","authors":"A. S. Karyagina, V. G. Bogush, P. A. Orlova, L. I. Davydova, A. V. Zhulina, T. M. Grunina, N. V. Strukova, M. S. Generalova, M. S. Krivozubov, S. E. Cheperegin, A. A. Ramonova, A. V. Gromov","doi":"10.1134/S000368382470008X","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Calcium–magnesium silicate ceramic diopside is an effective carrier of BMP-2 and, in combination with a bovine demineralized bone matrix as a scaffold, can induce effective reparative osteogenesis on the model of craniotomy in mice. It was of interest to investigate the efficacy of combined usage of BMP-2-loaded diopside with recombinant spidroins for the induction of osteogenesis. For this purpose, porous implants were prepared based on recombinant spidroin rS1/9, into which BMP-2 was introduced either as BMP-2 loaded diopside particles suspended in hyaluronic acid or by adsorption. Neo-osteogenesis with bone marrow formation occurred in both groups with BMP-2, most pronounced in the group with BMP-2 and diopside on the model of critical size defects in the cranium in mice. Thus, the use of 3D scaffolds based on recombinant spidroin with BMP2-loaded diopside particles in hyaluronic acid can lead to effective induction of osteogenesis. The spidroin scaffolds themselves represent a sufficiently effective carrier for BMP-2.</p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"60 7","pages":"1493 - 1503"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Implants Based on Calcium–Magnesium Silicate Ceramics Diopside as a Carrier of Recombinant BMP-2 and rS1/9 Recombinant Spidroin as a Scaffold: Reparative Osteogenesis in a Mouse Craniotomy Model\",\"authors\":\"A. S. Karyagina, V. G. Bogush, P. A. Orlova, L. I. Davydova, A. V. Zhulina, T. M. Grunina, N. V. Strukova, M. S. Generalova, M. S. Krivozubov, S. E. Cheperegin, A. A. Ramonova, A. V. Gromov\",\"doi\":\"10.1134/S000368382470008X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—Calcium–magnesium silicate ceramic diopside is an effective carrier of BMP-2 and, in combination with a bovine demineralized bone matrix as a scaffold, can induce effective reparative osteogenesis on the model of craniotomy in mice. It was of interest to investigate the efficacy of combined usage of BMP-2-loaded diopside with recombinant spidroins for the induction of osteogenesis. For this purpose, porous implants were prepared based on recombinant spidroin rS1/9, into which BMP-2 was introduced either as BMP-2 loaded diopside particles suspended in hyaluronic acid or by adsorption. Neo-osteogenesis with bone marrow formation occurred in both groups with BMP-2, most pronounced in the group with BMP-2 and diopside on the model of critical size defects in the cranium in mice. Thus, the use of 3D scaffolds based on recombinant spidroin with BMP2-loaded diopside particles in hyaluronic acid can lead to effective induction of osteogenesis. The spidroin scaffolds themselves represent a sufficiently effective carrier for BMP-2.</p>\",\"PeriodicalId\":466,\"journal\":{\"name\":\"Applied Biochemistry and Microbiology\",\"volume\":\"60 7\",\"pages\":\"1493 - 1503\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S000368382470008X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S000368382470008X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Hybrid Implants Based on Calcium–Magnesium Silicate Ceramics Diopside as a Carrier of Recombinant BMP-2 and rS1/9 Recombinant Spidroin as a Scaffold: Reparative Osteogenesis in a Mouse Craniotomy Model
Abstract—Calcium–magnesium silicate ceramic diopside is an effective carrier of BMP-2 and, in combination with a bovine demineralized bone matrix as a scaffold, can induce effective reparative osteogenesis on the model of craniotomy in mice. It was of interest to investigate the efficacy of combined usage of BMP-2-loaded diopside with recombinant spidroins for the induction of osteogenesis. For this purpose, porous implants were prepared based on recombinant spidroin rS1/9, into which BMP-2 was introduced either as BMP-2 loaded diopside particles suspended in hyaluronic acid or by adsorption. Neo-osteogenesis with bone marrow formation occurred in both groups with BMP-2, most pronounced in the group with BMP-2 and diopside on the model of critical size defects in the cranium in mice. Thus, the use of 3D scaffolds based on recombinant spidroin with BMP2-loaded diopside particles in hyaluronic acid can lead to effective induction of osteogenesis. The spidroin scaffolds themselves represent a sufficiently effective carrier for BMP-2.
期刊介绍:
Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.