{"title":"蛋白质组学分析确定了禽流感冠状病毒NSP10的细胞内靶标","authors":"Hao Dong, Xueyan Li, Shengkui Xu, Yuxin Wang, Ting Xia, Peng Li, Wenke Ruan","doi":"10.1007/s00705-025-06255-z","DOIUrl":null,"url":null,"abstract":"<div><p>Avian coronavirus, also known as infectious bronchitis virus (IBV), is the causative agent of infectious bronchitis (IB). The non-structural proteins (NSPs) of IBV are critical for viral replication and for evading the host’s immune response. The innate immune response serves as the first line of defense against viral infections. The IBV genome codes for 15 NSPs (NSP2-16). In this study, we identified host proteins interacting with IBV NSP10 using co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC/MS/MS). Proteomic analysis revealed that interactions of host proteins with NSP10 are involved in processes such as localization, transport, and metabolism, regulation of the cell cycle, and antiviral responses. We further explored the role of NSP10 in these immune and cellular regulation pathways and also confirmed the interaction between NSP10 and the host protein hnRNPA1. Further investigation showed that hnRNPA1 inhibited IBV replication. It is speculated that the binding of hnRNP A1 to NSP10 interferes with the function of the replication complex, thereby inhibiting virus replication. However, co-overexpression of NSP10 and hnRNP A1 partially restored viral replication, suggesting a complex relationship between these two proteins. These findings demonstrate that IBV NSP10 plays a significant role in viral infection and in modulating host cell processes, highlighting its potential as a target for therapeutic interventions.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"170 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic analysis identifies intracellular targets for avian coronavirus NSP10\",\"authors\":\"Hao Dong, Xueyan Li, Shengkui Xu, Yuxin Wang, Ting Xia, Peng Li, Wenke Ruan\",\"doi\":\"10.1007/s00705-025-06255-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Avian coronavirus, also known as infectious bronchitis virus (IBV), is the causative agent of infectious bronchitis (IB). The non-structural proteins (NSPs) of IBV are critical for viral replication and for evading the host’s immune response. The innate immune response serves as the first line of defense against viral infections. The IBV genome codes for 15 NSPs (NSP2-16). In this study, we identified host proteins interacting with IBV NSP10 using co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC/MS/MS). Proteomic analysis revealed that interactions of host proteins with NSP10 are involved in processes such as localization, transport, and metabolism, regulation of the cell cycle, and antiviral responses. We further explored the role of NSP10 in these immune and cellular regulation pathways and also confirmed the interaction between NSP10 and the host protein hnRNPA1. Further investigation showed that hnRNPA1 inhibited IBV replication. It is speculated that the binding of hnRNP A1 to NSP10 interferes with the function of the replication complex, thereby inhibiting virus replication. However, co-overexpression of NSP10 and hnRNP A1 partially restored viral replication, suggesting a complex relationship between these two proteins. These findings demonstrate that IBV NSP10 plays a significant role in viral infection and in modulating host cell processes, highlighting its potential as a target for therapeutic interventions.</p></div>\",\"PeriodicalId\":8359,\"journal\":{\"name\":\"Archives of Virology\",\"volume\":\"170 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00705-025-06255-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-025-06255-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Proteomic analysis identifies intracellular targets for avian coronavirus NSP10
Avian coronavirus, also known as infectious bronchitis virus (IBV), is the causative agent of infectious bronchitis (IB). The non-structural proteins (NSPs) of IBV are critical for viral replication and for evading the host’s immune response. The innate immune response serves as the first line of defense against viral infections. The IBV genome codes for 15 NSPs (NSP2-16). In this study, we identified host proteins interacting with IBV NSP10 using co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC/MS/MS). Proteomic analysis revealed that interactions of host proteins with NSP10 are involved in processes such as localization, transport, and metabolism, regulation of the cell cycle, and antiviral responses. We further explored the role of NSP10 in these immune and cellular regulation pathways and also confirmed the interaction between NSP10 and the host protein hnRNPA1. Further investigation showed that hnRNPA1 inhibited IBV replication. It is speculated that the binding of hnRNP A1 to NSP10 interferes with the function of the replication complex, thereby inhibiting virus replication. However, co-overexpression of NSP10 and hnRNP A1 partially restored viral replication, suggesting a complex relationship between these two proteins. These findings demonstrate that IBV NSP10 plays a significant role in viral infection and in modulating host cell processes, highlighting its potential as a target for therapeutic interventions.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.