Pei Ming Wang;Shao Fei Bo;Jun-Hui Ou;Xiu Yin Zhang
{"title":"基于阻抗调节网络的增强动态功率范围的高效宽带射频整流器","authors":"Pei Ming Wang;Shao Fei Bo;Jun-Hui Ou;Xiu Yin Zhang","doi":"10.1109/LMWT.2024.3523763","DOIUrl":null,"url":null,"abstract":"A high-efficiency rectifier designed to operate across a broad range of frequencies and power levels is proposed in this letter. The rectifier features a dual-branch impedance regulation network (IRN), two subrectifiers, and a load resistor. The IRN is used to construct specific impedance relationship between the upper and lower branches at different frequencies and power levels, demonstrating good matching performance across a wide bandwidth and dynamic power range (DPR). Theoretical analysis is carried out, and a prototype is implemented, fabricated, and measured for verification. At 1.8 GHz, the optimal efficiency is found over 70% at an input power level of 8 dBm. The frequency range of the prototype is from 1.4 to 2.5 GHz (beyond 70% of the optimal efficiency), and the calculated DPR of the prototype is 18 dB (from −5 to 13 dBm). The total size is <inline-formula> <tex-math>$0.22~\\lambda _{\\text {c}} \\times 0.24~\\lambda _{\\text {c}}$ </tex-math></inline-formula> (at 2 GHz).","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 3","pages":"306-309"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Wideband RF Rectifier With Enhanced Dynamic Power Range Based on Impedance Regulation Network\",\"authors\":\"Pei Ming Wang;Shao Fei Bo;Jun-Hui Ou;Xiu Yin Zhang\",\"doi\":\"10.1109/LMWT.2024.3523763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-efficiency rectifier designed to operate across a broad range of frequencies and power levels is proposed in this letter. The rectifier features a dual-branch impedance regulation network (IRN), two subrectifiers, and a load resistor. The IRN is used to construct specific impedance relationship between the upper and lower branches at different frequencies and power levels, demonstrating good matching performance across a wide bandwidth and dynamic power range (DPR). Theoretical analysis is carried out, and a prototype is implemented, fabricated, and measured for verification. At 1.8 GHz, the optimal efficiency is found over 70% at an input power level of 8 dBm. The frequency range of the prototype is from 1.4 to 2.5 GHz (beyond 70% of the optimal efficiency), and the calculated DPR of the prototype is 18 dB (from −5 to 13 dBm). The total size is <inline-formula> <tex-math>$0.22~\\\\lambda _{\\\\text {c}} \\\\times 0.24~\\\\lambda _{\\\\text {c}}$ </tex-math></inline-formula> (at 2 GHz).\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 3\",\"pages\":\"306-309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10833670/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10833670/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High-Efficiency Wideband RF Rectifier With Enhanced Dynamic Power Range Based on Impedance Regulation Network
A high-efficiency rectifier designed to operate across a broad range of frequencies and power levels is proposed in this letter. The rectifier features a dual-branch impedance regulation network (IRN), two subrectifiers, and a load resistor. The IRN is used to construct specific impedance relationship between the upper and lower branches at different frequencies and power levels, demonstrating good matching performance across a wide bandwidth and dynamic power range (DPR). Theoretical analysis is carried out, and a prototype is implemented, fabricated, and measured for verification. At 1.8 GHz, the optimal efficiency is found over 70% at an input power level of 8 dBm. The frequency range of the prototype is from 1.4 to 2.5 GHz (beyond 70% of the optimal efficiency), and the calculated DPR of the prototype is 18 dB (from −5 to 13 dBm). The total size is $0.22~\lambda _{\text {c}} \times 0.24~\lambda _{\text {c}}$ (at 2 GHz).