摄动简化修正Camassa-Holm方程的孤波解

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Cui-Hua Jin , Yong-Hui Xia , Hang Zheng
{"title":"摄动简化修正Camassa-Holm方程的孤波解","authors":"Cui-Hua Jin ,&nbsp;Yong-Hui Xia ,&nbsp;Hang Zheng","doi":"10.1016/j.aej.2025.02.038","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the persistence of solitary wave solution in a perturbed simplified modified Camassa–Holm equation. The perturbation terms are the backward diffusion and dissipation, which come from the Kuramoto–Sivashinsky equation. Firstly, on the basis of the classical Camassa–Holm equation, the bifurcated phase portraits of homoclinic orbit (or cuspidal loop) and solitary wave solution for unperturbed simplified modified Camassa–Holm equation are obtained by dynamic system method. And the persistence of solitary wave solutions with suitable wave speed <span><math><mi>c</mi></math></span> under Kuramoto–Sivashinsky perturbation is proved by using the geometric singular perturbation approach and Melnikov integral. Different from the study of the cuspidal loop in previous work, the simple zero point of Melnikov integral is obtained by calculating its explicit expression. At last, the results are verified by numerical simulation.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"122 ","pages":"Pages 91-97"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solitary wave solution in a perturbed simplified modified Camassa–Holm equation\",\"authors\":\"Cui-Hua Jin ,&nbsp;Yong-Hui Xia ,&nbsp;Hang Zheng\",\"doi\":\"10.1016/j.aej.2025.02.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the persistence of solitary wave solution in a perturbed simplified modified Camassa–Holm equation. The perturbation terms are the backward diffusion and dissipation, which come from the Kuramoto–Sivashinsky equation. Firstly, on the basis of the classical Camassa–Holm equation, the bifurcated phase portraits of homoclinic orbit (or cuspidal loop) and solitary wave solution for unperturbed simplified modified Camassa–Holm equation are obtained by dynamic system method. And the persistence of solitary wave solutions with suitable wave speed <span><math><mi>c</mi></math></span> under Kuramoto–Sivashinsky perturbation is proved by using the geometric singular perturbation approach and Melnikov integral. Different from the study of the cuspidal loop in previous work, the simple zero point of Melnikov integral is obtained by calculating its explicit expression. At last, the results are verified by numerical simulation.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"122 \",\"pages\":\"Pages 91-97\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825002121\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825002121","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了摄动简化修正Camassa-Holm方程中孤波解的持久性。扰动项是由Kuramoto-Sivashinsky方程导出的后向扩散和耗散。首先,在经典Camassa-Holm方程的基础上,采用动力系统方法得到了同斜轨道(或cusidal loop)的分岔相位图和无摄动简化修正Camassa-Holm方程的孤波解。利用几何奇异摄动方法和Melnikov积分,证明了在Kuramoto-Sivashinsky摄动下具有合适波速c的孤立波解的持久性。与以往对倒钩环的研究不同,Melnikov积分的简单零点是通过计算其显式得到的。最后,通过数值模拟对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solitary wave solution in a perturbed simplified modified Camassa–Holm equation
This paper investigates the persistence of solitary wave solution in a perturbed simplified modified Camassa–Holm equation. The perturbation terms are the backward diffusion and dissipation, which come from the Kuramoto–Sivashinsky equation. Firstly, on the basis of the classical Camassa–Holm equation, the bifurcated phase portraits of homoclinic orbit (or cuspidal loop) and solitary wave solution for unperturbed simplified modified Camassa–Holm equation are obtained by dynamic system method. And the persistence of solitary wave solutions with suitable wave speed c under Kuramoto–Sivashinsky perturbation is proved by using the geometric singular perturbation approach and Melnikov integral. Different from the study of the cuspidal loop in previous work, the simple zero point of Melnikov integral is obtained by calculating its explicit expression. At last, the results are verified by numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信