广义三角积分及其零点的渐近展开式

IF 1.2 3区 数学 Q1 MATHEMATICS
Gergő Nemes
{"title":"广义三角积分及其零点的渐近展开式","authors":"Gergő Nemes","doi":"10.1016/j.jmaa.2025.129463","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the asymptotic properties of the generalised trigonometric integral <span><math><mi>ti</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> and its associated modulus and phase functions for large complex values of <em>z</em>. We derive asymptotic expansions for these functions, accompanied by explicit and computable error bounds. For real values of <em>a</em>, the function <span><math><mi>ti</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> possesses infinitely many positive real zeros. Assuming <span><math><mi>a</mi><mo>&lt;</mo><mn>1</mn></math></span>, we establish asymptotic expansions for the large zeros, accompanied by precise error estimates. The error bounds for the asymptotics of the phase function and its zeros will be derived by studying the analytic properties of both the phase function and its inverse. Additionally, we demonstrate that for real variables, the derived asymptotic expansions are enveloping, meaning that successive partial sums provide upper and lower bounds for the corresponding functions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129463"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic expansions for the generalised trigonometric integral and its zeros\",\"authors\":\"Gergő Nemes\",\"doi\":\"10.1016/j.jmaa.2025.129463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the asymptotic properties of the generalised trigonometric integral <span><math><mi>ti</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> and its associated modulus and phase functions for large complex values of <em>z</em>. We derive asymptotic expansions for these functions, accompanied by explicit and computable error bounds. For real values of <em>a</em>, the function <span><math><mi>ti</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> possesses infinitely many positive real zeros. Assuming <span><math><mi>a</mi><mo>&lt;</mo><mn>1</mn></math></span>, we establish asymptotic expansions for the large zeros, accompanied by precise error estimates. The error bounds for the asymptotics of the phase function and its zeros will be derived by studying the analytic properties of both the phase function and its inverse. Additionally, we demonstrate that for real variables, the derived asymptotic expansions are enveloping, meaning that successive partial sums provide upper and lower bounds for the corresponding functions.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 1\",\"pages\":\"Article 129463\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002446\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002446","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了广义三角积分ti(a,z,α)及其相关模函数和相函数对于z的大复值的渐近性质。我们导出了这些函数的渐近展开式,并伴有显式和可计算的误差界。对于a的实值,函数ti(a,z,α)具有无穷多个正实零。假设a<;1,我们建立了大零的渐近展开式,并伴有精确的误差估计。通过研究相函数及其逆函数的解析性质,推导出相函数的渐近和零点的误差界。此外,我们证明了对于实变量,导出的渐近展开式是包络的,这意味着连续的部分和为相应的函数提供了上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic expansions for the generalised trigonometric integral and its zeros
In this paper, we investigate the asymptotic properties of the generalised trigonometric integral ti(a,z,α) and its associated modulus and phase functions for large complex values of z. We derive asymptotic expansions for these functions, accompanied by explicit and computable error bounds. For real values of a, the function ti(a,z,α) possesses infinitely many positive real zeros. Assuming a<1, we establish asymptotic expansions for the large zeros, accompanied by precise error estimates. The error bounds for the asymptotics of the phase function and its zeros will be derived by studying the analytic properties of both the phase function and its inverse. Additionally, we demonstrate that for real variables, the derived asymptotic expansions are enveloping, meaning that successive partial sums provide upper and lower bounds for the corresponding functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信