耦合Biot方程和泊松-能-普朗克方程的原始混合有限元方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Gabriel N. Gatica , Cristian Inzunza , Ricardo Ruiz-Baier
{"title":"耦合Biot方程和泊松-能-普朗克方程的原始混合有限元方法","authors":"Gabriel N. Gatica ,&nbsp;Cristian Inzunza ,&nbsp;Ricardo Ruiz-Baier","doi":"10.1016/j.camwa.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>We propose mixed finite element methods for the coupled Biot poroelasticity and Poisson–Nernst–Planck equations (modeling ion transport in deformable porous media). For the poroelasticity, we consider a primal-mixed, four-field formulation in terms of the solid displacement, the fluid pressure, the Darcy flux, and the total pressure. In turn, the Poisson–Nernst–Planck equations are formulated in terms of the electrostatic potential, the electric field, the ionized particle concentrations, their gradients, and the total ionic fluxes. The weak formulation, posed in Banach spaces, exhibits the structure of a perturbed block-diagonal operator consisting of perturbed and generalized saddle-point problems for the Biot equations, a generalized saddle-point system for the Poisson equations, and a perturbed twofold saddle-point problem for the Nernst–Planck equations. One of the main novelties here is the well-posedness analysis, hinging on the Banach fixed-point theorem along with small data assumptions, the Babuška–Brezzi theory in Banach spaces, and a slight variant of recent abstract results for perturbed saddle-point problems, again in Banach spaces. The associated Galerkin scheme is addressed similarly, employing the Banach fixed-point theorem to yield discrete well-posedness. A priori error estimates are derived, and simple numerical examples validate the theoretical error bounds, and illustrate the performance of the proposed schemes.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"186 ","pages":"Pages 53-83"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primal-mixed finite element methods for the coupled Biot and Poisson–Nernst–Planck equations\",\"authors\":\"Gabriel N. Gatica ,&nbsp;Cristian Inzunza ,&nbsp;Ricardo Ruiz-Baier\",\"doi\":\"10.1016/j.camwa.2025.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose mixed finite element methods for the coupled Biot poroelasticity and Poisson–Nernst–Planck equations (modeling ion transport in deformable porous media). For the poroelasticity, we consider a primal-mixed, four-field formulation in terms of the solid displacement, the fluid pressure, the Darcy flux, and the total pressure. In turn, the Poisson–Nernst–Planck equations are formulated in terms of the electrostatic potential, the electric field, the ionized particle concentrations, their gradients, and the total ionic fluxes. The weak formulation, posed in Banach spaces, exhibits the structure of a perturbed block-diagonal operator consisting of perturbed and generalized saddle-point problems for the Biot equations, a generalized saddle-point system for the Poisson equations, and a perturbed twofold saddle-point problem for the Nernst–Planck equations. One of the main novelties here is the well-posedness analysis, hinging on the Banach fixed-point theorem along with small data assumptions, the Babuška–Brezzi theory in Banach spaces, and a slight variant of recent abstract results for perturbed saddle-point problems, again in Banach spaces. The associated Galerkin scheme is addressed similarly, employing the Banach fixed-point theorem to yield discrete well-posedness. A priori error estimates are derived, and simple numerical examples validate the theoretical error bounds, and illustrate the performance of the proposed schemes.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"186 \",\"pages\":\"Pages 53-83\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125000975\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000975","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了耦合Biot孔隙弹性和泊松-能-普朗克方程(模拟可变形多孔介质中的离子输运)的混合有限元方法。对于孔隙弹性,我们考虑一个原始混合的四场公式,包括固体位移、流体压力、达西通量和总压力。反过来,泊松-能-普朗克方程是根据静电势、电场、电离粒子浓度、它们的梯度和总离子通量来表示的。在Banach空间中,给出了一个扰动块对角算子的结构,它由Biot方程的扰动和广义鞍点问题、Poisson方程的广义鞍点系统和Nernst-Planck方程的扰动双重鞍点问题组成。这里的一个主要新颖之处是适定性分析,它依赖于巴拿赫不动点定理和小数据假设,巴拿赫空间中的Babuška-Brezzi理论,以及最近关于摄动鞍点问题的抽象结果的一个微小变化,同样是在巴拿赫空间中。相关的伽辽金格式也被类似地处理,使用巴拿赫不动点定理来产生离散的适定性。推导了先验误差估计,并用简单的数值算例验证了理论误差范围,并说明了所提方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primal-mixed finite element methods for the coupled Biot and Poisson–Nernst–Planck equations
We propose mixed finite element methods for the coupled Biot poroelasticity and Poisson–Nernst–Planck equations (modeling ion transport in deformable porous media). For the poroelasticity, we consider a primal-mixed, four-field formulation in terms of the solid displacement, the fluid pressure, the Darcy flux, and the total pressure. In turn, the Poisson–Nernst–Planck equations are formulated in terms of the electrostatic potential, the electric field, the ionized particle concentrations, their gradients, and the total ionic fluxes. The weak formulation, posed in Banach spaces, exhibits the structure of a perturbed block-diagonal operator consisting of perturbed and generalized saddle-point problems for the Biot equations, a generalized saddle-point system for the Poisson equations, and a perturbed twofold saddle-point problem for the Nernst–Planck equations. One of the main novelties here is the well-posedness analysis, hinging on the Banach fixed-point theorem along with small data assumptions, the Babuška–Brezzi theory in Banach spaces, and a slight variant of recent abstract results for perturbed saddle-point problems, again in Banach spaces. The associated Galerkin scheme is addressed similarly, employing the Banach fixed-point theorem to yield discrete well-posedness. A priori error estimates are derived, and simple numerical examples validate the theoretical error bounds, and illustrate the performance of the proposed schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信