一氧化氮(NO)的电子附着争议

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Ana I. Lozano, Juan C. Oller, Paulo Limão-Vieira and Gustavo García*, 
{"title":"一氧化氮(NO)的电子附着争议","authors":"Ana I. Lozano,&nbsp;Juan C. Oller,&nbsp;Paulo Limão-Vieira and Gustavo García*,&nbsp;","doi":"10.1021/acs.jpca.4c0767510.1021/acs.jpca.4c07675","DOIUrl":null,"url":null,"abstract":"<p >We report novel total electron scattering cross sections (TCS) from nitric oxide (NO) in the impact energy range from 1 to 15 eV by using a magnetically confined electron transmission apparatus. The accuracy of the data to within 5% and its consistency across the energy range investigated, shows significant discrepancies from previous works as to the major resonance features and magnitude of the TCS. Within the shape of the TCS, we have identified nine features which have been assigned to electron attachment resonances, most of them reported for the first time, while a comprehensive analysis of those peaking at 7.0, 7.8, and 8.8 eV has led to solve the controversy about dissociative electron attachment (DEA) cross-section that persisted for more than 50 years.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 10","pages":"2429–2433 2429–2433"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.4c07675","citationCount":"0","resultStr":"{\"title\":\"Electron Attachment to Nitric Oxide (NO) Controversy\",\"authors\":\"Ana I. Lozano,&nbsp;Juan C. Oller,&nbsp;Paulo Limão-Vieira and Gustavo García*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.4c0767510.1021/acs.jpca.4c07675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report novel total electron scattering cross sections (TCS) from nitric oxide (NO) in the impact energy range from 1 to 15 eV by using a magnetically confined electron transmission apparatus. The accuracy of the data to within 5% and its consistency across the energy range investigated, shows significant discrepancies from previous works as to the major resonance features and magnitude of the TCS. Within the shape of the TCS, we have identified nine features which have been assigned to electron attachment resonances, most of them reported for the first time, while a comprehensive analysis of those peaking at 7.0, 7.8, and 8.8 eV has led to solve the controversy about dissociative electron attachment (DEA) cross-section that persisted for more than 50 years.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"129 10\",\"pages\":\"2429–2433 2429–2433\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.4c07675\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.4c07675\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c07675","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了利用磁约束电子传输装置,在1 ~ 15 eV的冲击能量范围内,从一氧化氮(NO)中获得的新的总电子散射截面(TCS)。数据的精度在5%以内,在整个能量范围内的一致性,显示出与以前的工作在TCS的主要共振特征和大小上的显着差异。在TCS的形状内,我们确定了9个电子附着共振的特征,其中大多数是首次报道,而对7.0,7.8和8.8 eV峰值的综合分析解决了持续50多年的解离电子附着(DEA)截面争议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electron Attachment to Nitric Oxide (NO) Controversy

We report novel total electron scattering cross sections (TCS) from nitric oxide (NO) in the impact energy range from 1 to 15 eV by using a magnetically confined electron transmission apparatus. The accuracy of the data to within 5% and its consistency across the energy range investigated, shows significant discrepancies from previous works as to the major resonance features and magnitude of the TCS. Within the shape of the TCS, we have identified nine features which have been assigned to electron attachment resonances, most of them reported for the first time, while a comprehensive analysis of those peaking at 7.0, 7.8, and 8.8 eV has led to solve the controversy about dissociative electron attachment (DEA) cross-section that persisted for more than 50 years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信