离子特异性水合力对方解石表面水膜稳定性的影响

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kazuya Kobayashi, Naoya Nishi, Tetsuo Sakka
{"title":"离子特异性水合力对方解石表面水膜稳定性的影响","authors":"Kazuya Kobayashi, Naoya Nishi, Tetsuo Sakka","doi":"10.1021/acs.langmuir.4c05089","DOIUrl":null,"url":null,"abstract":"The hydration force is indispensable for understanding short-range interfacial forces in aqueous systems. Perturbation of the hydration structure by ions generates an ion-specific hydration force. Surface-force measurements on calcite surfaces have suggested that Na<sup>+</sup> decreases the repulsive hydration force by directly adsorbing the surface and disrupting the hydration layers. However, the influence of structural changes on the surface force remains unclear. We conducted molecular dynamics simulations for water films between calcite (104) surfaces and oil/water interfaces. Ion-specific hydration forces estimated by the simulations were consistent with the experimental results. Notably, the ion-specific hydration forces cannot be explained solely by the structure of water molecules because ions do not significantly change the structure of the hydration layers, such as density distributions and orientations. We propose a novel mechanism whereby ion-specific electrostatic potentials in the water films control the adhesive and repulsive nature of the interfaces. The directly adsorbed Na<sup>+</sup> on the calcite causes the monotonically decreasing electrostatic potential from the calcite surface, thereby enhancing adhesion. Ca<sup>2+</sup> results in a convex shape of the electrostatic potential curve, which enhances repulsion. Importantly, the shape of the electrostatic potential curve depends on the Stern layer structure and the perturbation between the surface and interfaces. This study offers important insight for interpreting surface-force measurements in aqueous systems.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"26 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ion-Specific Hydration Forces on the Stability of Water Films on Calcite Surfaces\",\"authors\":\"Kazuya Kobayashi, Naoya Nishi, Tetsuo Sakka\",\"doi\":\"10.1021/acs.langmuir.4c05089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydration force is indispensable for understanding short-range interfacial forces in aqueous systems. Perturbation of the hydration structure by ions generates an ion-specific hydration force. Surface-force measurements on calcite surfaces have suggested that Na<sup>+</sup> decreases the repulsive hydration force by directly adsorbing the surface and disrupting the hydration layers. However, the influence of structural changes on the surface force remains unclear. We conducted molecular dynamics simulations for water films between calcite (104) surfaces and oil/water interfaces. Ion-specific hydration forces estimated by the simulations were consistent with the experimental results. Notably, the ion-specific hydration forces cannot be explained solely by the structure of water molecules because ions do not significantly change the structure of the hydration layers, such as density distributions and orientations. We propose a novel mechanism whereby ion-specific electrostatic potentials in the water films control the adhesive and repulsive nature of the interfaces. The directly adsorbed Na<sup>+</sup> on the calcite causes the monotonically decreasing electrostatic potential from the calcite surface, thereby enhancing adhesion. Ca<sup>2+</sup> results in a convex shape of the electrostatic potential curve, which enhances repulsion. Importantly, the shape of the electrostatic potential curve depends on the Stern layer structure and the perturbation between the surface and interfaces. This study offers important insight for interpreting surface-force measurements in aqueous systems.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c05089\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05089","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水合力对于理解水体系中的短程界面力是必不可少的。离子对水化结构的扰动产生离子特异性水化力。方解石表面的表面力测量表明,Na+通过直接吸附表面和破坏水化层来降低排斥性水化力。然而,结构变化对表面力的影响尚不清楚。我们对方解石(104)表面和油/水界面之间的水膜进行了分子动力学模拟。模拟计算的离子特异性水合力与实验结果一致。值得注意的是,离子特异性水合力不能仅仅用水分子的结构来解释,因为离子不会显著改变水合层的结构,如密度分布和方向。我们提出了一种新的机制,即水膜中的离子特异性静电势控制界面的粘附和排斥性质。直接吸附在方解石上的Na+使方解石表面的静电势单调减小,从而增强了附着力。Ca2+导致静电势曲线的凸形,这增强了斥力。重要的是,静电势曲线的形状取决于斯特恩层结构和表面与界面之间的摄动。这项研究为解释水系统中的表面力测量提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Ion-Specific Hydration Forces on the Stability of Water Films on Calcite Surfaces

Effect of Ion-Specific Hydration Forces on the Stability of Water Films on Calcite Surfaces
The hydration force is indispensable for understanding short-range interfacial forces in aqueous systems. Perturbation of the hydration structure by ions generates an ion-specific hydration force. Surface-force measurements on calcite surfaces have suggested that Na+ decreases the repulsive hydration force by directly adsorbing the surface and disrupting the hydration layers. However, the influence of structural changes on the surface force remains unclear. We conducted molecular dynamics simulations for water films between calcite (104) surfaces and oil/water interfaces. Ion-specific hydration forces estimated by the simulations were consistent with the experimental results. Notably, the ion-specific hydration forces cannot be explained solely by the structure of water molecules because ions do not significantly change the structure of the hydration layers, such as density distributions and orientations. We propose a novel mechanism whereby ion-specific electrostatic potentials in the water films control the adhesive and repulsive nature of the interfaces. The directly adsorbed Na+ on the calcite causes the monotonically decreasing electrostatic potential from the calcite surface, thereby enhancing adhesion. Ca2+ results in a convex shape of the electrostatic potential curve, which enhances repulsion. Importantly, the shape of the electrostatic potential curve depends on the Stern layer structure and the perturbation between the surface and interfaces. This study offers important insight for interpreting surface-force measurements in aqueous systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信