负焓掺杂稳定高性能钠离子电池p2型氧化物正极

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yongcong Huang, Shuai Gu, Xin Xu, Zibing An, Xiaodong Han, Yulin Cao, Dongsheng He, Fangchang Zhang, Hao Guo, Yan Liu, Xingqun Liao, Guiyu Liu, Peiwen Liu, Feng Wu, Yingzhi Li, Zhenyu Wang, Zhiqiang Wang, Chao Ding, Yanfang Wang, Jingjing Chen, Mingyang Yang, Feng Jiang, Yonghong Deng, Zhenghe Xu, Zhouguang Lu
{"title":"负焓掺杂稳定高性能钠离子电池p2型氧化物正极","authors":"Yongcong Huang,&nbsp;Shuai Gu,&nbsp;Xin Xu,&nbsp;Zibing An,&nbsp;Xiaodong Han,&nbsp;Yulin Cao,&nbsp;Dongsheng He,&nbsp;Fangchang Zhang,&nbsp;Hao Guo,&nbsp;Yan Liu,&nbsp;Xingqun Liao,&nbsp;Guiyu Liu,&nbsp;Peiwen Liu,&nbsp;Feng Wu,&nbsp;Yingzhi Li,&nbsp;Zhenyu Wang,&nbsp;Zhiqiang Wang,&nbsp;Chao Ding,&nbsp;Yanfang Wang,&nbsp;Jingjing Chen,&nbsp;Mingyang Yang,&nbsp;Feng Jiang,&nbsp;Yonghong Deng,&nbsp;Zhenghe Xu,&nbsp;Zhouguang Lu","doi":"10.1002/adma.202408012","DOIUrl":null,"url":null,"abstract":"<p>P2-type Na<sub>0.67</sub>Ni<sub>0.33</sub>Mn<sub>0.67</sub>O<sub>2</sub> (NNMO) as cathode material for sodium-ion batteries (SIBs) largely suffers from continuous accumulation of local stress caused by destructive structural evolution and irreversible oxygen loss upon cycling, leading to rapid capacity degradation. Herein, a strategy of negative enthalpy doping (NED), wherein transition metal (TM) sites are substituted with 0.01 mol each Sn, Sb, Cu, Ti, Mg, and Zn to increase the stability of the TM layers, is proposed. The robust structure of NED-NNMO significantly suppresses the P2 to O2 phase transition and improves the Na<sup>+</sup> kinetics upon long-term cycling. Consequently, the NED-NNMO exhibits much smoothened voltage platforms and improved oxygen redox reversibility, thus considerably extended lifetime as compared with the pristine NNMO sample. The NED-NNMO delivers a high capacity of 138.9 mAh g<sup>−1</sup> with an operation voltage of 3.51 V under 0.1 C and prominent capacity retention of 94.6% after 100 cycles under 1 C, and 90.0% over 3000 cycles under ultra-high rate of 30 C, which is among the best over previous reports. Moreover, an ampere-hour scale pouch cell based on the NED-NNMO demonstrates an energy density of 139 Wh kg<sup>−1</sup>. This work sheds light on a route of negative enthalpy doping to design high-performance sodium-ion batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 17","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative Enthalpy Doping Stabilizes P2-Type Oxides Cathode for High-Performance Sodium-Ion Batteries\",\"authors\":\"Yongcong Huang,&nbsp;Shuai Gu,&nbsp;Xin Xu,&nbsp;Zibing An,&nbsp;Xiaodong Han,&nbsp;Yulin Cao,&nbsp;Dongsheng He,&nbsp;Fangchang Zhang,&nbsp;Hao Guo,&nbsp;Yan Liu,&nbsp;Xingqun Liao,&nbsp;Guiyu Liu,&nbsp;Peiwen Liu,&nbsp;Feng Wu,&nbsp;Yingzhi Li,&nbsp;Zhenyu Wang,&nbsp;Zhiqiang Wang,&nbsp;Chao Ding,&nbsp;Yanfang Wang,&nbsp;Jingjing Chen,&nbsp;Mingyang Yang,&nbsp;Feng Jiang,&nbsp;Yonghong Deng,&nbsp;Zhenghe Xu,&nbsp;Zhouguang Lu\",\"doi\":\"10.1002/adma.202408012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>P2-type Na<sub>0.67</sub>Ni<sub>0.33</sub>Mn<sub>0.67</sub>O<sub>2</sub> (NNMO) as cathode material for sodium-ion batteries (SIBs) largely suffers from continuous accumulation of local stress caused by destructive structural evolution and irreversible oxygen loss upon cycling, leading to rapid capacity degradation. Herein, a strategy of negative enthalpy doping (NED), wherein transition metal (TM) sites are substituted with 0.01 mol each Sn, Sb, Cu, Ti, Mg, and Zn to increase the stability of the TM layers, is proposed. The robust structure of NED-NNMO significantly suppresses the P2 to O2 phase transition and improves the Na<sup>+</sup> kinetics upon long-term cycling. Consequently, the NED-NNMO exhibits much smoothened voltage platforms and improved oxygen redox reversibility, thus considerably extended lifetime as compared with the pristine NNMO sample. The NED-NNMO delivers a high capacity of 138.9 mAh g<sup>−1</sup> with an operation voltage of 3.51 V under 0.1 C and prominent capacity retention of 94.6% after 100 cycles under 1 C, and 90.0% over 3000 cycles under ultra-high rate of 30 C, which is among the best over previous reports. Moreover, an ampere-hour scale pouch cell based on the NED-NNMO demonstrates an energy density of 139 Wh kg<sup>−1</sup>. This work sheds light on a route of negative enthalpy doping to design high-performance sodium-ion batteries.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 17\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202408012\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202408012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为钠离子电池(sib)正极材料的p2型Na0.67Ni0.33Mn0.67O2 (NNMO)在循环过程中由于结构的破坏性演化和不可逆的氧损失导致局部应力的持续积累,导致容量的快速退化。本文提出了一种负焓掺杂(NED)策略,即用0.01 mol的Sn、Sb、Cu、Ti、Mg和Zn取代过渡金属(TM)位点,以提高TM层的稳定性。NED-NNMO坚固的结构显著抑制了P2到O2的相变,提高了长期循环时的Na+动力学。因此,NED-NNMO表现出更平滑的电压平台和改善的氧氧化还原可逆性,因此与原始NNMO样品相比,寿命大大延长。NED-NNMO具有138.9 mAh g−1的高容量,在0.1 C下工作电压为3.51 V,在1 C下100次循环后的容量保持率为94.6%,在30 C的超高倍率下3000次循环后的容量保持率为90.0%,是以往报道中最好的。此外,基于NED-NNMO的安培小时尺度袋状电池的能量密度为139 Wh kg−1。这项工作为负焓掺杂设计高性能钠离子电池的途径提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Negative Enthalpy Doping Stabilizes P2-Type Oxides Cathode for High-Performance Sodium-Ion Batteries

Negative Enthalpy Doping Stabilizes P2-Type Oxides Cathode for High-Performance Sodium-Ion Batteries

Negative Enthalpy Doping Stabilizes P2-Type Oxides Cathode for High-Performance Sodium-Ion Batteries

P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) as cathode material for sodium-ion batteries (SIBs) largely suffers from continuous accumulation of local stress caused by destructive structural evolution and irreversible oxygen loss upon cycling, leading to rapid capacity degradation. Herein, a strategy of negative enthalpy doping (NED), wherein transition metal (TM) sites are substituted with 0.01 mol each Sn, Sb, Cu, Ti, Mg, and Zn to increase the stability of the TM layers, is proposed. The robust structure of NED-NNMO significantly suppresses the P2 to O2 phase transition and improves the Na+ kinetics upon long-term cycling. Consequently, the NED-NNMO exhibits much smoothened voltage platforms and improved oxygen redox reversibility, thus considerably extended lifetime as compared with the pristine NNMO sample. The NED-NNMO delivers a high capacity of 138.9 mAh g−1 with an operation voltage of 3.51 V under 0.1 C and prominent capacity retention of 94.6% after 100 cycles under 1 C, and 90.0% over 3000 cycles under ultra-high rate of 30 C, which is among the best over previous reports. Moreover, an ampere-hour scale pouch cell based on the NED-NNMO demonstrates an energy density of 139 Wh kg−1. This work sheds light on a route of negative enthalpy doping to design high-performance sodium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信