非磁性二阶拓扑绝缘体中高陈氏数的工程量子反常霍尔效应

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoran Feng, Yingxi Bai, Zhiqi Chen, Ying Dai, Baibiao Huang, Chengwang Niu
{"title":"非磁性二阶拓扑绝缘体中高陈氏数的工程量子反常霍尔效应","authors":"Xiaoran Feng, Yingxi Bai, Zhiqi Chen, Ying Dai, Baibiao Huang, Chengwang Niu","doi":"10.1002/adfm.202501934","DOIUrl":null,"url":null,"abstract":"Quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless edge states, which is of significant fundamental and technological importance in low-dissipation spintronics. Here, in contrast to generally reported QAHE in 2D ferromagnets, the emergence of high-Chern-number QAHE in 2D nonmagnets is theoretically demonstrated. Remarkably, tight-binding model analyses and calculations show that Floquet engineering offers a fertile strategy to achieve the QAHE in 2D nonmagnetic second-order topological insulators (SOTIs), with the Chern number reaching as much as <span data-altimg=\"/cms/asset/c4c92865-2669-4f24-bbf6-21a776b1bcfd/adfm202501934-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adfm202501934-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,4\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"upper C equals plus or minus 6\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"addition\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,±\" data-semantic-parent=\"4\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:1616301X:media:adfm202501934:adfm202501934-math-0001\" display=\"inline\" location=\"graphic/adfm202501934-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,4\" data-semantic-content=\"1\" data-semantic-role=\"equality\" data-semantic-speech=\"upper C equals plus or minus 6\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">C</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic-parent=\"5\" data-semantic-role=\"addition\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,±\" data-semantic-parent=\"4\" data-semantic-role=\"addition\" data-semantic-type=\"operator\">±</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">6</mn></mrow></mrow>$C=\\pm 6$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Moreover, based on the Chern number, corner states, and edge states analyses, the SMoSiN<sub>2</sub> monolayer is identified as an experimentally feasible candidate of the proposed mechanism of Floquet QAHE, where a topological phase transition from the 2D nonmagnetic SOTI to QAHE emerges. These findings pave a technological avenue to bridge the higher-order topology and exotic QAH physics with high feasibility of applications in topological spintronics.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"8 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Quantum Anomalous Hall Effect with a High Chern Number in Nonmagnetic Second-Order Topological Insulator\",\"authors\":\"Xiaoran Feng, Yingxi Bai, Zhiqi Chen, Ying Dai, Baibiao Huang, Chengwang Niu\",\"doi\":\"10.1002/adfm.202501934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless edge states, which is of significant fundamental and technological importance in low-dissipation spintronics. Here, in contrast to generally reported QAHE in 2D ferromagnets, the emergence of high-Chern-number QAHE in 2D nonmagnets is theoretically demonstrated. Remarkably, tight-binding model analyses and calculations show that Floquet engineering offers a fertile strategy to achieve the QAHE in 2D nonmagnetic second-order topological insulators (SOTIs), with the Chern number reaching as much as <span data-altimg=\\\"/cms/asset/c4c92865-2669-4f24-bbf6-21a776b1bcfd/adfm202501934-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adfm202501934-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper C equals plus or minus 6\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"prefixop\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,±\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:1616301X:media:adfm202501934:adfm202501934-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/adfm202501934-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper C equals plus or minus 6\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">C</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,±\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\">±</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">6</mn></mrow></mrow>$C=\\\\pm 6$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Moreover, based on the Chern number, corner states, and edge states analyses, the SMoSiN<sub>2</sub> monolayer is identified as an experimentally feasible candidate of the proposed mechanism of Floquet QAHE, where a topological phase transition from the 2D nonmagnetic SOTI to QAHE emerges. These findings pave a technological avenue to bridge the higher-order topology and exotic QAH physics with high feasibility of applications in topological spintronics.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202501934\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202501934","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有高陈氏数的量子反常霍尔效应具有多个无耗散边缘态,在低耗散自旋电子学中具有重要的基础和技术意义。这里,与一般报道的二维铁磁体中的QAHE相反,理论上证明了二维非磁体中高陈氏数QAHE的出现。值得注意的是,紧密结合模型分析和计算表明,Floquet工程为在二维非磁性二阶拓扑绝缘体(SOTIs)中实现QAHE提供了一种有效的策略,其Chern数高达C=±6$C=\pm 6$。此外,基于Chern数、角态和边缘态分析,smossin2单层被确定为Floquet QAHE机制的实验可行候选者,其中从二维非磁性SOTI到QAHE的拓扑相变出现。这些发现为高阶拓扑和奇异QAH物理在拓扑自旋电子学中的应用提供了一条高可行性的技术途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Quantum Anomalous Hall Effect with a High Chern Number in Nonmagnetic Second-Order Topological Insulator

Engineering Quantum Anomalous Hall Effect with a High Chern Number in Nonmagnetic Second-Order Topological Insulator
Quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless edge states, which is of significant fundamental and technological importance in low-dissipation spintronics. Here, in contrast to generally reported QAHE in 2D ferromagnets, the emergence of high-Chern-number QAHE in 2D nonmagnets is theoretically demonstrated. Remarkably, tight-binding model analyses and calculations show that Floquet engineering offers a fertile strategy to achieve the QAHE in 2D nonmagnetic second-order topological insulators (SOTIs), with the Chern number reaching as much as C=±6$C=\pm 6$. Moreover, based on the Chern number, corner states, and edge states analyses, the SMoSiN2 monolayer is identified as an experimentally feasible candidate of the proposed mechanism of Floquet QAHE, where a topological phase transition from the 2D nonmagnetic SOTI to QAHE emerges. These findings pave a technological avenue to bridge the higher-order topology and exotic QAH physics with high feasibility of applications in topological spintronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信