基于毛细分形模型的季节性冻土电阻率估算

IF 5 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Lige Bai, Jing Li, Tieyu Liu, Zhenjiao Jiang, Deqiang Mao
{"title":"基于毛细分形模型的季节性冻土电阻率估算","authors":"Lige Bai, Jing Li, Tieyu Liu, Zhenjiao Jiang, Deqiang Mao","doi":"10.1029/2024wr038224","DOIUrl":null,"url":null,"abstract":"Frozen soil resistivity exhibits high sensitivity to temperature variations and ice-water distribution. The conversion of soil water content (SWC) and resistivity based on petrophysical relationships enables the characterization of spatial distribution and changes in freezing and thawing states. Monitoring ground resistivity is essential for understanding frozen soil structure and evaluating climate change and ecosystems. The previous studies demonstrate that estimating soil resistivity below zero degrees based on the empirical model has significant errors. This work proposes a capillary bundle fractal model for frozen soil resistivity estimation based on SWC hydrologic parameters. The fractal theory describes the geoelectrical features of frozen porous media through the variable pore geometry and representative elementary volume. The sensitivity analysis discusses the potential relationships between pore parameters, conductance components, and fractal geometric parameters within frozen soil resistivity and reconstructs the hysteresis separation of freeze-thaw processes. The field test application in the seasonal freeze-thaw monitoring site demonstrates that the estimated resistivity and experimental samples are consistent with the field monitoring resistivity data. By combining unified conceptual assumptions, we established the connection between electrical permeability and thermal conductivity, offering a basis for exploring coupled hydro-thermal mechanisms in frozen soil. The proposed model accurately estimates the variations in seasonal frozen resistivity, providing a reliable reference for quantitatively analyzing the mechanisms of freeze-thaw processes.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal Frozen Soil Electrical Resistivity Estimation Based on Capillary Fractal Model\",\"authors\":\"Lige Bai, Jing Li, Tieyu Liu, Zhenjiao Jiang, Deqiang Mao\",\"doi\":\"10.1029/2024wr038224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frozen soil resistivity exhibits high sensitivity to temperature variations and ice-water distribution. The conversion of soil water content (SWC) and resistivity based on petrophysical relationships enables the characterization of spatial distribution and changes in freezing and thawing states. Monitoring ground resistivity is essential for understanding frozen soil structure and evaluating climate change and ecosystems. The previous studies demonstrate that estimating soil resistivity below zero degrees based on the empirical model has significant errors. This work proposes a capillary bundle fractal model for frozen soil resistivity estimation based on SWC hydrologic parameters. The fractal theory describes the geoelectrical features of frozen porous media through the variable pore geometry and representative elementary volume. The sensitivity analysis discusses the potential relationships between pore parameters, conductance components, and fractal geometric parameters within frozen soil resistivity and reconstructs the hysteresis separation of freeze-thaw processes. The field test application in the seasonal freeze-thaw monitoring site demonstrates that the estimated resistivity and experimental samples are consistent with the field monitoring resistivity data. By combining unified conceptual assumptions, we established the connection between electrical permeability and thermal conductivity, offering a basis for exploring coupled hydro-thermal mechanisms in frozen soil. The proposed model accurately estimates the variations in seasonal frozen resistivity, providing a reliable reference for quantitatively analyzing the mechanisms of freeze-thaw processes.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr038224\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038224","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

冻土电阻率对温度变化和冰水分布具有很高的敏感性。基于岩石物理关系的土壤含水量(SWC)和电阻率转换可以表征冻融状态的空间分布和变化。监测地面电阻率对了解冻土结构、评价气候变化和生态系统至关重要。以往的研究表明,基于经验模型估算零度以下土壤电阻率存在较大误差。提出了基于SWC水文参数估算冻土电阻率的毛细束分形模型。分形理论通过孔隙形态的变化和具有代表性的基本体积来描述冻结多孔介质的地电特征。敏感性分析探讨了冻土电阻率中孔隙参数、电导分量和分形几何参数之间的潜在关系,重构了冻融过程的滞后分离。在季节性冻融监测点的现场试验应用表明,估算电阻率和实验样品与现场监测电阻率数据基本一致。结合统一的概念假设,建立了导电性与导热系数之间的联系,为探索冻土的水热耦合机制提供了基础。该模型准确地估计了季节冻结电阻率的变化,为定量分析冻融过程的机理提供了可靠的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal Frozen Soil Electrical Resistivity Estimation Based on Capillary Fractal Model
Frozen soil resistivity exhibits high sensitivity to temperature variations and ice-water distribution. The conversion of soil water content (SWC) and resistivity based on petrophysical relationships enables the characterization of spatial distribution and changes in freezing and thawing states. Monitoring ground resistivity is essential for understanding frozen soil structure and evaluating climate change and ecosystems. The previous studies demonstrate that estimating soil resistivity below zero degrees based on the empirical model has significant errors. This work proposes a capillary bundle fractal model for frozen soil resistivity estimation based on SWC hydrologic parameters. The fractal theory describes the geoelectrical features of frozen porous media through the variable pore geometry and representative elementary volume. The sensitivity analysis discusses the potential relationships between pore parameters, conductance components, and fractal geometric parameters within frozen soil resistivity and reconstructs the hysteresis separation of freeze-thaw processes. The field test application in the seasonal freeze-thaw monitoring site demonstrates that the estimated resistivity and experimental samples are consistent with the field monitoring resistivity data. By combining unified conceptual assumptions, we established the connection between electrical permeability and thermal conductivity, offering a basis for exploring coupled hydro-thermal mechanisms in frozen soil. The proposed model accurately estimates the variations in seasonal frozen resistivity, providing a reliable reference for quantitatively analyzing the mechanisms of freeze-thaw processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信