壁虎启发的接触敏感和自适应软握弯曲的柔性表面

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Wenhui Cui, Yuanzhe Li, Tianhui Sun, Tong Ling, Shiyang Guo, Wenling Zhang, Yu Tian
{"title":"壁虎启发的接触敏感和自适应软握弯曲的柔性表面","authors":"Wenhui Cui, Yuanzhe Li, Tianhui Sun, Tong Ling, Shiyang Guo, Wenling Zhang, Yu Tian","doi":"10.26599/frict.2025.9441027","DOIUrl":null,"url":null,"abstract":"<p>Soft grippers are key manipulation tools for robotics and end effectors for securely grasping objects of various shapes and sizes on demand. However, critical challenges, including self-adaptive grasping to curved surfaces and monitoring the contact state, remain. Here, a gecko-inspired curved flexible surface adaptive gripper (CSAG), which consists of a variable-bending pneumatic actuator, a triboelectric sensor (T-sensor), and a gecko-inspired microwedge adhesive, is proposed. The contact-sensitive triboelectric sensor can sense the critical contact state of objects to trigger a variable-bending pneumatic actuator with sufficient shear loading for the geckoinspired microwedge adhesive. A set of experiments are implemented to verify that the proposed soft gripper can adaptively grasp diverse curved objects, including quail eggs, cans, shuttlecocks, expanding objects with varying volumes (such as balloons, the range of diameter variation is 20–115 mm), and spherical acrylic cylinders (20–40 mm) at low pressures (20–25 kPa) with a maximum weight of 37 g. Additionally, the tracking and grasping of a moving ball is demonstrated via a mean-shift algorithm based on image recognition coupled with coordination tracking of a robotic arm. The soft gripper provides a new paradigm to achieve switchable grasping of curved flexible surfaces, which broadens future applications for versatile unstructured human‒robot‒environment interactions, such as adaptive robots and medical devices.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"16 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gecko-inspired contact-sensible and self-adaptive soft gripping of curved flexible surfaces\",\"authors\":\"Wenhui Cui, Yuanzhe Li, Tianhui Sun, Tong Ling, Shiyang Guo, Wenling Zhang, Yu Tian\",\"doi\":\"10.26599/frict.2025.9441027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soft grippers are key manipulation tools for robotics and end effectors for securely grasping objects of various shapes and sizes on demand. However, critical challenges, including self-adaptive grasping to curved surfaces and monitoring the contact state, remain. Here, a gecko-inspired curved flexible surface adaptive gripper (CSAG), which consists of a variable-bending pneumatic actuator, a triboelectric sensor (T-sensor), and a gecko-inspired microwedge adhesive, is proposed. The contact-sensitive triboelectric sensor can sense the critical contact state of objects to trigger a variable-bending pneumatic actuator with sufficient shear loading for the geckoinspired microwedge adhesive. A set of experiments are implemented to verify that the proposed soft gripper can adaptively grasp diverse curved objects, including quail eggs, cans, shuttlecocks, expanding objects with varying volumes (such as balloons, the range of diameter variation is 20–115 mm), and spherical acrylic cylinders (20–40 mm) at low pressures (20–25 kPa) with a maximum weight of 37 g. Additionally, the tracking and grasping of a moving ball is demonstrated via a mean-shift algorithm based on image recognition coupled with coordination tracking of a robotic arm. The soft gripper provides a new paradigm to achieve switchable grasping of curved flexible surfaces, which broadens future applications for versatile unstructured human‒robot‒environment interactions, such as adaptive robots and medical devices.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26599/frict.2025.9441027\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441027","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

软抓取器是机器人和末端执行器的关键操作工具,可以根据需要安全地抓取各种形状和大小的物体。然而,关键的挑战,包括自适应抓取曲面和监测接触状态,仍然存在。提出了一种由可变弯曲气动执行器、摩擦电传感器和壁虎微楔胶组成的壁虎曲面柔性面自适应夹持器。接触式摩擦电传感器可以感知物体的临界接触状态,从而触发具有足够剪切载荷的可变弯曲气动执行器,用于壁虎仿生微楔胶。通过实验验证了所提出的软夹持器能够在低压(20-25 kPa)下自适应抓取各种弯曲物体,包括鹌鹑蛋、罐头、毽子、不同体积的膨胀物体(如气球,直径变化范围为20-115 mm)和最大重量为37 g的球形丙烯酸圆柱体(20-40 mm)。此外,通过基于图像识别的均值移位算法,结合机械臂的协调跟踪,演示了对运动球的跟踪和抓取。软夹持器为实现弯曲柔性表面的可切换抓取提供了一种新的范例,这拓宽了未来多功能非结构化人-机器人-环境交互的应用,如自适应机器人和医疗设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gecko-inspired contact-sensible and self-adaptive soft gripping of curved flexible surfaces

Gecko-inspired contact-sensible and self-adaptive soft gripping of curved flexible surfaces

Soft grippers are key manipulation tools for robotics and end effectors for securely grasping objects of various shapes and sizes on demand. However, critical challenges, including self-adaptive grasping to curved surfaces and monitoring the contact state, remain. Here, a gecko-inspired curved flexible surface adaptive gripper (CSAG), which consists of a variable-bending pneumatic actuator, a triboelectric sensor (T-sensor), and a gecko-inspired microwedge adhesive, is proposed. The contact-sensitive triboelectric sensor can sense the critical contact state of objects to trigger a variable-bending pneumatic actuator with sufficient shear loading for the geckoinspired microwedge adhesive. A set of experiments are implemented to verify that the proposed soft gripper can adaptively grasp diverse curved objects, including quail eggs, cans, shuttlecocks, expanding objects with varying volumes (such as balloons, the range of diameter variation is 20–115 mm), and spherical acrylic cylinders (20–40 mm) at low pressures (20–25 kPa) with a maximum weight of 37 g. Additionally, the tracking and grasping of a moving ball is demonstrated via a mean-shift algorithm based on image recognition coupled with coordination tracking of a robotic arm. The soft gripper provides a new paradigm to achieve switchable grasping of curved flexible surfaces, which broadens future applications for versatile unstructured human‒robot‒environment interactions, such as adaptive robots and medical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信