{"title":"高温超声速环境下管状武器热化学-机械损伤跨尺度预测","authors":"Shuli Li, Guolai Yang, Liqun Wang","doi":"10.26599/frict.2025.9440975","DOIUrl":null,"url":null,"abstract":"<p>Thermochemical–mechanical damage prediction suitable for high-temperature and supersonic conditions is essential for evaluating the life span of barrel weapons. This paper proposes a thermochemical–mechanical damage prediction method in extreme environments by combining the cross-scale damage framework and scale expansion strategy. For the cross-scale damage framework, macroscale surface damage is converted into mesoscale particulate impacts via two-phase flow interior ballistics. The particulate impact is transformed into microscale crystal impacts via velocity decomposition and synthesis. For the scale expansion strategy, the dislocation features of discretized crystals are obtained via the momentum mirror. The first proposed boundary dislocation can solve the boundary coupling of discretized crystals and modify the hardening criterion. A damage agent model is constructed on the basis of sufficient samples to generalize mesoscale crystal damage to macroscale surface damage. A simulation experiment is executed to verify the accuracy of the calculation method for determining crystal impact damage under high-temperature supersonic environments. A launching experiment with 100 projectiles is executed to prove the accuracy of the thermochemical–mechanical damage prediction method.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"21 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-scale prediction for thermochemical–mechanical damage of barrel weapons under high-temperature and supersonic environments\",\"authors\":\"Shuli Li, Guolai Yang, Liqun Wang\",\"doi\":\"10.26599/frict.2025.9440975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermochemical–mechanical damage prediction suitable for high-temperature and supersonic conditions is essential for evaluating the life span of barrel weapons. This paper proposes a thermochemical–mechanical damage prediction method in extreme environments by combining the cross-scale damage framework and scale expansion strategy. For the cross-scale damage framework, macroscale surface damage is converted into mesoscale particulate impacts via two-phase flow interior ballistics. The particulate impact is transformed into microscale crystal impacts via velocity decomposition and synthesis. For the scale expansion strategy, the dislocation features of discretized crystals are obtained via the momentum mirror. The first proposed boundary dislocation can solve the boundary coupling of discretized crystals and modify the hardening criterion. A damage agent model is constructed on the basis of sufficient samples to generalize mesoscale crystal damage to macroscale surface damage. A simulation experiment is executed to verify the accuracy of the calculation method for determining crystal impact damage under high-temperature supersonic environments. A launching experiment with 100 projectiles is executed to prove the accuracy of the thermochemical–mechanical damage prediction method.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26599/frict.2025.9440975\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9440975","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Cross-scale prediction for thermochemical–mechanical damage of barrel weapons under high-temperature and supersonic environments
Thermochemical–mechanical damage prediction suitable for high-temperature and supersonic conditions is essential for evaluating the life span of barrel weapons. This paper proposes a thermochemical–mechanical damage prediction method in extreme environments by combining the cross-scale damage framework and scale expansion strategy. For the cross-scale damage framework, macroscale surface damage is converted into mesoscale particulate impacts via two-phase flow interior ballistics. The particulate impact is transformed into microscale crystal impacts via velocity decomposition and synthesis. For the scale expansion strategy, the dislocation features of discretized crystals are obtained via the momentum mirror. The first proposed boundary dislocation can solve the boundary coupling of discretized crystals and modify the hardening criterion. A damage agent model is constructed on the basis of sufficient samples to generalize mesoscale crystal damage to macroscale surface damage. A simulation experiment is executed to verify the accuracy of the calculation method for determining crystal impact damage under high-temperature supersonic environments. A launching experiment with 100 projectiles is executed to prove the accuracy of the thermochemical–mechanical damage prediction method.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.