IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Vatsal Sanjay, Detlef Lohse
{"title":"Unifying Theory of Scaling in Drop Impact: Forces and Maximum Spreading Diameter","authors":"Vatsal Sanjay, Detlef Lohse","doi":"10.1103/physrevlett.134.104003","DOIUrl":null,"url":null,"abstract":"The dynamics of drop impact on a rigid surface strongly depends on the droplet’s velocity, its size, and its material properties. The main characteristics are the droplet’s force exerted on the surface and its maximal spreading radius. The crucial question is how do they depend on the (dimensionless) control parameters, which are the Weber number W</a:mi>e</a:mi></a:mrow></a:math> (nondimensionalized kinetic energy) and the Ohnesorge number <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>O</c:mi><c:mi>h</c:mi></c:mrow></c:math> (dimensionless viscosity). Here, we perform direct numerical simulations over the huge parameter range <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mn>1</e:mn><e:mo>≤</e:mo><e:mi>W</e:mi><e:mi>e</e:mi><e:mo>≤</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mn>3</e:mn></e:mrow></e:msup></e:mrow></e:math> and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mo>−</g:mo><g:mn>3</g:mn></g:mrow></g:msup><g:mo>≤</g:mo><g:mi>O</g:mi><g:mi>h</g:mi><g:mo>≤</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>2</g:mn></g:mrow></g:msup></g:mrow></g:math> and in particular develop a unifying theoretical approach, which is inspired by the Grossmann-Lohse theory for wall-bounded turbulence [Grossmann and Lohse, ; ]. The key idea is to split the energy dissipation rate into the different phases of the impact process, in which different physical mechanisms dominate. The theory can consistently and quantitatively account for the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>W</i:mi><i:mi>e</i:mi></i:mrow></i:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mi>O</k:mi><k:mi>h</k:mi></k:mrow></k:math> dependences of the maximal impact force and the maximal spreading diameter over the huge parameter space. It also clarifies why viscous dissipation plays a significant role during impact, even for low-viscosity droplets (low <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>O</m:mi><m:mi>h</m:mi></m:math>), in contrast to what had been assumed in some prior theories. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"17 2 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.104003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

液滴撞击刚性表面的动态很大程度上取决于液滴的速度、大小及其材料特性。主要特征是液滴对表面施加的力及其最大扩散半径。关键问题是它们如何取决于(无量纲)控制参数,即韦伯数 We(无量纲化动能)和奥内索尔格数 Oh(无量纲化粘度)。在这里,我们在 1≤We≤103 和 10-3≤Oh≤102 的巨大参数范围内进行了直接数值模拟,特别是开发了一种统一的理论方法,该方法受到了壁界湍流的格罗斯曼-洛塞理论的启发[Grossmann and Lohse, ; ]。其主要思想是将能量耗散率分为撞击过程的不同阶段,在这些阶段中,不同的物理机制占主导地位。在巨大的参数空间内,该理论可以一致地定量解释最大冲击力和最大扩展直径的 We 和 Oh 相关性。该理论还阐明了为什么粘滞耗散在撞击过程中起着重要作用,即使对于低粘度液滴(低 Oh)也是如此,这与之前一些理论的假设截然不同。 美国物理学会出版 2025
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unifying Theory of Scaling in Drop Impact: Forces and Maximum Spreading Diameter
The dynamics of drop impact on a rigid surface strongly depends on the droplet’s velocity, its size, and its material properties. The main characteristics are the droplet’s force exerted on the surface and its maximal spreading radius. The crucial question is how do they depend on the (dimensionless) control parameters, which are the Weber number We (nondimensionalized kinetic energy) and the Ohnesorge number Oh (dimensionless viscosity). Here, we perform direct numerical simulations over the huge parameter range 1We103 and 103Oh102 and in particular develop a unifying theoretical approach, which is inspired by the Grossmann-Lohse theory for wall-bounded turbulence [Grossmann and Lohse, ; ]. The key idea is to split the energy dissipation rate into the different phases of the impact process, in which different physical mechanisms dominate. The theory can consistently and quantitatively account for the We and Oh dependences of the maximal impact force and the maximal spreading diameter over the huge parameter space. It also clarifies why viscous dissipation plays a significant role during impact, even for low-viscosity droplets (low Oh), in contrast to what had been assumed in some prior theories. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信