{"title":"Unifying Theory of Scaling in Drop Impact: Forces and Maximum Spreading Diameter","authors":"Vatsal Sanjay, Detlef Lohse","doi":"10.1103/physrevlett.134.104003","DOIUrl":null,"url":null,"abstract":"The dynamics of drop impact on a rigid surface strongly depends on the droplet’s velocity, its size, and its material properties. The main characteristics are the droplet’s force exerted on the surface and its maximal spreading radius. The crucial question is how do they depend on the (dimensionless) control parameters, which are the Weber number W</a:mi>e</a:mi></a:mrow></a:math> (nondimensionalized kinetic energy) and the Ohnesorge number <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>O</c:mi><c:mi>h</c:mi></c:mrow></c:math> (dimensionless viscosity). Here, we perform direct numerical simulations over the huge parameter range <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mn>1</e:mn><e:mo>≤</e:mo><e:mi>W</e:mi><e:mi>e</e:mi><e:mo>≤</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mn>3</e:mn></e:mrow></e:msup></e:mrow></e:math> and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mo>−</g:mo><g:mn>3</g:mn></g:mrow></g:msup><g:mo>≤</g:mo><g:mi>O</g:mi><g:mi>h</g:mi><g:mo>≤</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>2</g:mn></g:mrow></g:msup></g:mrow></g:math> and in particular develop a unifying theoretical approach, which is inspired by the Grossmann-Lohse theory for wall-bounded turbulence [Grossmann and Lohse, ; ]. The key idea is to split the energy dissipation rate into the different phases of the impact process, in which different physical mechanisms dominate. The theory can consistently and quantitatively account for the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>W</i:mi><i:mi>e</i:mi></i:mrow></i:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mi>O</k:mi><k:mi>h</k:mi></k:mrow></k:math> dependences of the maximal impact force and the maximal spreading diameter over the huge parameter space. It also clarifies why viscous dissipation plays a significant role during impact, even for low-viscosity droplets (low <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>O</m:mi><m:mi>h</m:mi></m:math>), in contrast to what had been assumed in some prior theories. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"17 2 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.104003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
液滴撞击刚性表面的动态很大程度上取决于液滴的速度、大小及其材料特性。主要特征是液滴对表面施加的力及其最大扩散半径。关键问题是它们如何取决于(无量纲)控制参数,即韦伯数 We(无量纲化动能)和奥内索尔格数 Oh(无量纲化粘度)。在这里,我们在 1≤We≤103 和 10-3≤Oh≤102 的巨大参数范围内进行了直接数值模拟,特别是开发了一种统一的理论方法,该方法受到了壁界湍流的格罗斯曼-洛塞理论的启发[Grossmann and Lohse, ; ]。其主要思想是将能量耗散率分为撞击过程的不同阶段,在这些阶段中,不同的物理机制占主导地位。在巨大的参数空间内,该理论可以一致地定量解释最大冲击力和最大扩展直径的 We 和 Oh 相关性。该理论还阐明了为什么粘滞耗散在撞击过程中起着重要作用,即使对于低粘度液滴(低 Oh)也是如此,这与之前一些理论的假设截然不同。 美国物理学会出版 2025
Unifying Theory of Scaling in Drop Impact: Forces and Maximum Spreading Diameter
The dynamics of drop impact on a rigid surface strongly depends on the droplet’s velocity, its size, and its material properties. The main characteristics are the droplet’s force exerted on the surface and its maximal spreading radius. The crucial question is how do they depend on the (dimensionless) control parameters, which are the Weber number We (nondimensionalized kinetic energy) and the Ohnesorge number Oh (dimensionless viscosity). Here, we perform direct numerical simulations over the huge parameter range 1≤We≤103 and 10−3≤Oh≤102 and in particular develop a unifying theoretical approach, which is inspired by the Grossmann-Lohse theory for wall-bounded turbulence [Grossmann and Lohse, ; ]. The key idea is to split the energy dissipation rate into the different phases of the impact process, in which different physical mechanisms dominate. The theory can consistently and quantitatively account for the We and Oh dependences of the maximal impact force and the maximal spreading diameter over the huge parameter space. It also clarifies why viscous dissipation plays a significant role during impact, even for low-viscosity droplets (low Oh), in contrast to what had been assumed in some prior theories. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks