范德华反铁磁半导体中自发对称性破缺的量子光-物质耦合

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kyung Ik Sim, Jae Hoon Kim, Byung Cheol Park
{"title":"范德华反铁磁半导体中自发对称性破缺的量子光-物质耦合","authors":"Kyung Ik Sim, Jae Hoon Kim, Byung Cheol Park","doi":"10.1038/s41467-025-57777-8","DOIUrl":null,"url":null,"abstract":"<p>Light-matter interaction simultaneously alters both the original material and incident light. Light not only reveals material details but also activates coupling mechanisms. The coupling has been demonstrated mechanically, for instance, through the patterning of metallic antennas, resulting in the emergence of plasmonic quasiparticles and enabling wavefront engineering of light via the generalized Snell’s law. However, quantum-mechanical light-matter interaction, wherein photons coherently excite distinct quantum pathways, remains poorly understood. Here, we report on quantum interference between light-induced quantum pathways through the orbital quantum levels and spin continuum. The quantum interference immediately breaks the symmetry of the hexagonal antiferromagnetic semiconductor FePS<sub>3</sub>. Below the Néel temperature, we observe the emergence of birefringence and linear dichroism, namely, quantum anisotropy due to quantum interference, which is further enhanced by the thickness effect. We explain the direct relevance of the quantum anisotropy to a quantum phase transition by spontaneous symmetry breaking in Mexican hat potential. Our findings suggest material modulation via selective quantum pathways through quantum light-matter interaction.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"87 3 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-matter coupling via quantum pathways for spontaneous symmetry breaking in van der Waals antiferromagnetic semiconductors\",\"authors\":\"Kyung Ik Sim, Jae Hoon Kim, Byung Cheol Park\",\"doi\":\"10.1038/s41467-025-57777-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Light-matter interaction simultaneously alters both the original material and incident light. Light not only reveals material details but also activates coupling mechanisms. The coupling has been demonstrated mechanically, for instance, through the patterning of metallic antennas, resulting in the emergence of plasmonic quasiparticles and enabling wavefront engineering of light via the generalized Snell’s law. However, quantum-mechanical light-matter interaction, wherein photons coherently excite distinct quantum pathways, remains poorly understood. Here, we report on quantum interference between light-induced quantum pathways through the orbital quantum levels and spin continuum. The quantum interference immediately breaks the symmetry of the hexagonal antiferromagnetic semiconductor FePS<sub>3</sub>. Below the Néel temperature, we observe the emergence of birefringence and linear dichroism, namely, quantum anisotropy due to quantum interference, which is further enhanced by the thickness effect. We explain the direct relevance of the quantum anisotropy to a quantum phase transition by spontaneous symmetry breaking in Mexican hat potential. Our findings suggest material modulation via selective quantum pathways through quantum light-matter interaction.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"87 3 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57777-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57777-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光-物质相互作用同时改变了原始材料和入射光。光不仅可以揭示材料的细节,还可以激活耦合机制。这种耦合已经在机械上得到了证明,例如,通过金属天线的图案,导致等离子体准粒子的出现,并通过广义斯涅尔定律实现光的波前工程。然而,量子力学的光-物质相互作用,其中光子相干地激发不同的量子途径,仍然知之甚少。在这里,我们报道了光诱导量子途径通过轨道量子水平和自旋连续体之间的量子干涉。量子干涉立即破坏了六方反铁磁半导体FePS3的对称性。在nsamel温度以下,我们观察到双折射和线性二色性的出现,即由于量子干涉而产生的量子各向异性,厚度效应进一步增强了量子各向异性。我们通过墨西哥帽势的自发对称性破缺解释了量子各向异性与量子相变的直接关联。我们的研究结果表明,通过量子光物质相互作用的选择性量子途径进行物质调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Light-matter coupling via quantum pathways for spontaneous symmetry breaking in van der Waals antiferromagnetic semiconductors

Light-matter coupling via quantum pathways for spontaneous symmetry breaking in van der Waals antiferromagnetic semiconductors

Light-matter interaction simultaneously alters both the original material and incident light. Light not only reveals material details but also activates coupling mechanisms. The coupling has been demonstrated mechanically, for instance, through the patterning of metallic antennas, resulting in the emergence of plasmonic quasiparticles and enabling wavefront engineering of light via the generalized Snell’s law. However, quantum-mechanical light-matter interaction, wherein photons coherently excite distinct quantum pathways, remains poorly understood. Here, we report on quantum interference between light-induced quantum pathways through the orbital quantum levels and spin continuum. The quantum interference immediately breaks the symmetry of the hexagonal antiferromagnetic semiconductor FePS3. Below the Néel temperature, we observe the emergence of birefringence and linear dichroism, namely, quantum anisotropy due to quantum interference, which is further enhanced by the thickness effect. We explain the direct relevance of the quantum anisotropy to a quantum phase transition by spontaneous symmetry breaking in Mexican hat potential. Our findings suggest material modulation via selective quantum pathways through quantum light-matter interaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信