螺旋-螺旋多肽聚合离子液体嵌段共聚物中的离子输运

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yingying Chen, Tianjian Yang, Yao Lin, Christopher M. Evans
{"title":"螺旋-螺旋多肽聚合离子液体嵌段共聚物中的离子输运","authors":"Yingying Chen, Tianjian Yang, Yao Lin, Christopher M. Evans","doi":"10.1038/s41467-025-57784-9","DOIUrl":null,"url":null,"abstract":"<p>Helical-helical polypeptide polymerized ionic liquid block copolymers (PPIL BCPs) are synthesized to investigate the role of helical structure on self-assembly and ionic conductivity. PPIL BCPs, consisting of a cationic polypeptide (PTPLG) with bis(trifluoromethane sulfonimide) (TFSI) counterion and varying lengths connected to a length-fixed neutral poly-(γ-benzyl-<sub>L</sub>-glutamate) (PBLG) block, exhibit stable helical conformations with minimal glass transition (<i>T</i><sub>g</sub>) variation. Here, we show that increasing PIL composition leads to a transition from poorly ordered to highly ordered lamellar (LAM) structures with the highest PIL content BCP forming a bilayer LAM structure with close-packed helices. This morphology yields a 1.5 order of magnitude higher <i>T</i><sub>g</sub>- and volume fraction-normalized ionic conductivity and a morphology factor f &gt; 0.8 compared to less ordered BCPs with f &lt; 0.05 and f = 2/3 for ideal lamellae. These results highlight the critical role of helical structure in optimizing ion transport, offering a design strategy for high-performance solid electrolytes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion transport in helical-helical polypeptide polymerized ionic liquid block copolymers\",\"authors\":\"Yingying Chen, Tianjian Yang, Yao Lin, Christopher M. Evans\",\"doi\":\"10.1038/s41467-025-57784-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Helical-helical polypeptide polymerized ionic liquid block copolymers (PPIL BCPs) are synthesized to investigate the role of helical structure on self-assembly and ionic conductivity. PPIL BCPs, consisting of a cationic polypeptide (PTPLG) with bis(trifluoromethane sulfonimide) (TFSI) counterion and varying lengths connected to a length-fixed neutral poly-(γ-benzyl-<sub>L</sub>-glutamate) (PBLG) block, exhibit stable helical conformations with minimal glass transition (<i>T</i><sub>g</sub>) variation. Here, we show that increasing PIL composition leads to a transition from poorly ordered to highly ordered lamellar (LAM) structures with the highest PIL content BCP forming a bilayer LAM structure with close-packed helices. This morphology yields a 1.5 order of magnitude higher <i>T</i><sub>g</sub>- and volume fraction-normalized ionic conductivity and a morphology factor f &gt; 0.8 compared to less ordered BCPs with f &lt; 0.05 and f = 2/3 for ideal lamellae. These results highlight the critical role of helical structure in optimizing ion transport, offering a design strategy for high-performance solid electrolytes.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57784-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57784-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

合成了螺旋-螺旋多肽聚合离子液体嵌段共聚物(PPIL - bcp),研究了螺旋结构对离子液体自组装和电导率的影响。PPIL bcp由阳离子多肽(PTPLG)和双(三氟甲烷磺酰亚胺)(TFSI)反离子组成,并与长度固定的中性聚(γ-苄基- l-谷氨酸)(PBLG)嵌段连接,具有稳定的螺旋构象和最小的玻璃化转变(Tg)变化。在这里,我们发现增加PIL成分导致从低有序到高有序的层状(LAM)结构转变,其中PIL含量最高的BCP形成具有紧密排列螺旋的双层LAM结构。这种形态产生了高1.5个数量级的Tg和体积分数归一化离子电导率和形态因子f >; 0.8相比,较不有序的bcp, f <; 0.05和f = 2/3的理想片层。这些结果强调了螺旋结构在优化输运中的关键作用,为高性能固体电解质的设计提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ion transport in helical-helical polypeptide polymerized ionic liquid block copolymers

Ion transport in helical-helical polypeptide polymerized ionic liquid block copolymers

Helical-helical polypeptide polymerized ionic liquid block copolymers (PPIL BCPs) are synthesized to investigate the role of helical structure on self-assembly and ionic conductivity. PPIL BCPs, consisting of a cationic polypeptide (PTPLG) with bis(trifluoromethane sulfonimide) (TFSI) counterion and varying lengths connected to a length-fixed neutral poly-(γ-benzyl-L-glutamate) (PBLG) block, exhibit stable helical conformations with minimal glass transition (Tg) variation. Here, we show that increasing PIL composition leads to a transition from poorly ordered to highly ordered lamellar (LAM) structures with the highest PIL content BCP forming a bilayer LAM structure with close-packed helices. This morphology yields a 1.5 order of magnitude higher Tg- and volume fraction-normalized ionic conductivity and a morphology factor f > 0.8 compared to less ordered BCPs with f < 0.05 and f = 2/3 for ideal lamellae. These results highlight the critical role of helical structure in optimizing ion transport, offering a design strategy for high-performance solid electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信