手动到自动优化多步阿哌沙班合成平台

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED
Ruchi Chauhan, Abhilash Rana, Amirreza Mottafegh, Dong Pyo Kim, Ajay K. Singh
{"title":"手动到自动优化多步阿哌沙班合成平台","authors":"Ruchi Chauhan, Abhilash Rana, Amirreza Mottafegh, Dong Pyo Kim, Ajay K. Singh","doi":"10.1021/acs.oprd.4c00535","DOIUrl":null,"url":null,"abstract":"A novel approach has been utilized in a continuous flow auto-optimizer for multistep apixaban (APX) synthesis, cutting residence time to 17.2 min and boosting overall yield by 78%. This AI-driven tool bypasses traditional trial-and-error methods, streamlining reactivity space navigation and enhancing productivity. It is designed to reduce APX production costs, improve space-time yield, and facilitate the transition from batch to continuous manufacturing, addressing critical gaps in the industry and advancing the field of digital smart workflows.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"56 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manual to Auto-Optimization Platform of Multistep Apixaban Synthesis\",\"authors\":\"Ruchi Chauhan, Abhilash Rana, Amirreza Mottafegh, Dong Pyo Kim, Ajay K. Singh\",\"doi\":\"10.1021/acs.oprd.4c00535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach has been utilized in a continuous flow auto-optimizer for multistep apixaban (APX) synthesis, cutting residence time to 17.2 min and boosting overall yield by 78%. This AI-driven tool bypasses traditional trial-and-error methods, streamlining reactivity space navigation and enhancing productivity. It is designed to reduce APX production costs, improve space-time yield, and facilitate the transition from batch to continuous manufacturing, addressing critical gaps in the industry and advancing the field of digital smart workflows.\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.oprd.4c00535\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00535","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

一种新的方法被应用于连续流自动优化器中,用于多步合成阿哌沙班(APX),将停留时间缩短到17.2 min,并将总收率提高了78%。这种人工智能驱动的工具绕过了传统的试错方法,简化了反应空间导航,提高了生产力。它旨在降低APX生产成本,提高时空产量,促进从批量制造到连续制造的过渡,解决行业中的关键差距,推进数字智能工作流程领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Manual to Auto-Optimization Platform of Multistep Apixaban Synthesis

Manual to Auto-Optimization Platform of Multistep Apixaban Synthesis
A novel approach has been utilized in a continuous flow auto-optimizer for multistep apixaban (APX) synthesis, cutting residence time to 17.2 min and boosting overall yield by 78%. This AI-driven tool bypasses traditional trial-and-error methods, streamlining reactivity space navigation and enhancing productivity. It is designed to reduce APX production costs, improve space-time yield, and facilitate the transition from batch to continuous manufacturing, addressing critical gaps in the industry and advancing the field of digital smart workflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信