Catarina Oliveira, Marta Vilela, João Silva Marques, Cláudia Jorge, Tiago Rodrigues, Ana Rita Francisco, Rita Marante de Oliveira, Beatriz Silva, João Lourenço Silva, Arlindo L Oliveira, Fausto J Pinto, Miguel Nobre Menezes
{"title":"利用一种新的深度学习人工智能模型无创地推导有创冠状动脉造影的瞬时自由波比,并与人工操作人员的表现进行比较。","authors":"Catarina Oliveira, Marta Vilela, João Silva Marques, Cláudia Jorge, Tiago Rodrigues, Ana Rita Francisco, Rita Marante de Oliveira, Beatriz Silva, João Lourenço Silva, Arlindo L Oliveira, Fausto J Pinto, Miguel Nobre Menezes","doi":"10.1007/s10554-025-03369-y","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for instantaneous wave-free Ratio (iFR). We aimed to develop binary iFR lesion classification AI models and compare them with human performance. single-center retrospective study of patients undergoing CAG and iFR. A validated encoder-decoder convolutional neural network (CNN) performed segmentation. Manual annotation of target vessel and pressure sensor location on a segmented telediastolic frame followed. Three AI models classified lesions as positive (≤ 0.89) or negative (> 0.89). Model 1 uses preprocessed vessel diameters with a transformer. Models 2/3 are EfficientNet-B5 CNNs using concatenated angiography and segmentation - Model 3 employs class-frequency-weighted Cross-Entropy Loss. Previous findings demonstrated Model 3's superiority for left anterior descending (LAD) and Model 1's for circumflex (Cx)/right coronary artery (RCA) - they were therefore unified into a vessel-based model. Ten-fold patient-level cross-validation enabled full sample training/testing. Three experienced operators performed binary iFR classification using single frames of raw/segmented images. Comparison metrics were accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Across 250 measurements, AI accuracy was 72%, PPV 48%, NPV 90%, sensitivity 77%, and specificity 71%. Human accuracy ranged from 54 to 74%. NPV was high for the Cx/RCA (AI: 96/98%; operators: 94/97%), but AI significantly outperformed humans in the LAD (78% vs. 60-64%). An AI model capable of binary iFR lesions classification mildly outperformed interventional cardiologists, supporting further validation studies.</p>","PeriodicalId":94227,"journal":{"name":"The international journal of cardiovascular imaging","volume":" ","pages":"755-771"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982120/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-invasive derivation of instantaneous free-wave ratio from invasive coronary angiography using a new deep learning artificial intelligence model and comparison with human operators' performance.\",\"authors\":\"Catarina Oliveira, Marta Vilela, João Silva Marques, Cláudia Jorge, Tiago Rodrigues, Ana Rita Francisco, Rita Marante de Oliveira, Beatriz Silva, João Lourenço Silva, Arlindo L Oliveira, Fausto J Pinto, Miguel Nobre Menezes\",\"doi\":\"10.1007/s10554-025-03369-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for instantaneous wave-free Ratio (iFR). We aimed to develop binary iFR lesion classification AI models and compare them with human performance. single-center retrospective study of patients undergoing CAG and iFR. A validated encoder-decoder convolutional neural network (CNN) performed segmentation. Manual annotation of target vessel and pressure sensor location on a segmented telediastolic frame followed. Three AI models classified lesions as positive (≤ 0.89) or negative (> 0.89). Model 1 uses preprocessed vessel diameters with a transformer. Models 2/3 are EfficientNet-B5 CNNs using concatenated angiography and segmentation - Model 3 employs class-frequency-weighted Cross-Entropy Loss. Previous findings demonstrated Model 3's superiority for left anterior descending (LAD) and Model 1's for circumflex (Cx)/right coronary artery (RCA) - they were therefore unified into a vessel-based model. Ten-fold patient-level cross-validation enabled full sample training/testing. Three experienced operators performed binary iFR classification using single frames of raw/segmented images. Comparison metrics were accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Across 250 measurements, AI accuracy was 72%, PPV 48%, NPV 90%, sensitivity 77%, and specificity 71%. Human accuracy ranged from 54 to 74%. NPV was high for the Cx/RCA (AI: 96/98%; operators: 94/97%), but AI significantly outperformed humans in the LAD (78% vs. 60-64%). An AI model capable of binary iFR lesions classification mildly outperformed interventional cardiologists, supporting further validation studies.</p>\",\"PeriodicalId\":94227,\"journal\":{\"name\":\"The international journal of cardiovascular imaging\",\"volume\":\" \",\"pages\":\"755-771\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982120/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The international journal of cardiovascular imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10554-025-03369-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of cardiovascular imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10554-025-03369-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Non-invasive derivation of instantaneous free-wave ratio from invasive coronary angiography using a new deep learning artificial intelligence model and comparison with human operators' performance.
Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for instantaneous wave-free Ratio (iFR). We aimed to develop binary iFR lesion classification AI models and compare them with human performance. single-center retrospective study of patients undergoing CAG and iFR. A validated encoder-decoder convolutional neural network (CNN) performed segmentation. Manual annotation of target vessel and pressure sensor location on a segmented telediastolic frame followed. Three AI models classified lesions as positive (≤ 0.89) or negative (> 0.89). Model 1 uses preprocessed vessel diameters with a transformer. Models 2/3 are EfficientNet-B5 CNNs using concatenated angiography and segmentation - Model 3 employs class-frequency-weighted Cross-Entropy Loss. Previous findings demonstrated Model 3's superiority for left anterior descending (LAD) and Model 1's for circumflex (Cx)/right coronary artery (RCA) - they were therefore unified into a vessel-based model. Ten-fold patient-level cross-validation enabled full sample training/testing. Three experienced operators performed binary iFR classification using single frames of raw/segmented images. Comparison metrics were accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Across 250 measurements, AI accuracy was 72%, PPV 48%, NPV 90%, sensitivity 77%, and specificity 71%. Human accuracy ranged from 54 to 74%. NPV was high for the Cx/RCA (AI: 96/98%; operators: 94/97%), but AI significantly outperformed humans in the LAD (78% vs. 60-64%). An AI model capable of binary iFR lesions classification mildly outperformed interventional cardiologists, supporting further validation studies.