赤霉素酸和光照对海草种子萌发的影响。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Riccardo Pieraccini, Lawrence Whatley, Nico Koedam, Ann Vanreusel, Tobias Dolch, Jasper Dierick, Tom Van der Stocken
{"title":"赤霉素酸和光照对海草种子萌发的影响。","authors":"Riccardo Pieraccini, Lawrence Whatley, Nico Koedam, Ann Vanreusel, Tobias Dolch, Jasper Dierick, Tom Van der Stocken","doi":"10.1111/ppl.70137","DOIUrl":null,"url":null,"abstract":"<p><p>Seagrass meadows have been heavily affected by human activities, with Zostera marina L. (Zosteraceae) being one of the most impacted species. Seed-based methods are currently the preferred approach for their restoration, yet low germination rates and poor seedling establishment remain significant challenges. This study explored the combined effects of light spectra (white, red, and darkness), photoperiod, and gibberellic acid (GA<sub>3-</sub>0, 50, 500, and 1000 mg L<sup>-1</sup>) on Z. marina seed germination using a fully crossed incubation experiment. Penalised logistic regression and Cox proportional hazards analysis were chosen to account for low germination events and to analyse the temporal dynamics of germination. We found that light conditions, particularly red light and darkness, when combined with GA<sub>3</sub>, significantly enhanced germination probability. Furthermore, mid (50 mg L<sup>-1</sup>) and high (500 mg L<sup>-1</sup>) GA<sub>3</sub> concentrations reduced time-to-germination. Morphometric analysis of the cotyledonary and leaf tissue development indicates no adverse effects of the treatments on seedling development. Our findings suggest that light and GA<sub>3</sub> treatments effectively improve germination success and reduce dormancy in Z. marina seeds. Seed treatments can mitigate stress- or manipulation-induced dormancy and can represent a viable strategy for on-demand germination, such as in the context of seed-based restoration efforts.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70137"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gibberellic acid and light effects on seed germination in the seagrass Zostera marina.\",\"authors\":\"Riccardo Pieraccini, Lawrence Whatley, Nico Koedam, Ann Vanreusel, Tobias Dolch, Jasper Dierick, Tom Van der Stocken\",\"doi\":\"10.1111/ppl.70137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seagrass meadows have been heavily affected by human activities, with Zostera marina L. (Zosteraceae) being one of the most impacted species. Seed-based methods are currently the preferred approach for their restoration, yet low germination rates and poor seedling establishment remain significant challenges. This study explored the combined effects of light spectra (white, red, and darkness), photoperiod, and gibberellic acid (GA<sub>3-</sub>0, 50, 500, and 1000 mg L<sup>-1</sup>) on Z. marina seed germination using a fully crossed incubation experiment. Penalised logistic regression and Cox proportional hazards analysis were chosen to account for low germination events and to analyse the temporal dynamics of germination. We found that light conditions, particularly red light and darkness, when combined with GA<sub>3</sub>, significantly enhanced germination probability. Furthermore, mid (50 mg L<sup>-1</sup>) and high (500 mg L<sup>-1</sup>) GA<sub>3</sub> concentrations reduced time-to-germination. Morphometric analysis of the cotyledonary and leaf tissue development indicates no adverse effects of the treatments on seedling development. Our findings suggest that light and GA<sub>3</sub> treatments effectively improve germination success and reduce dormancy in Z. marina seeds. Seed treatments can mitigate stress- or manipulation-induced dormancy and can represent a viable strategy for on-demand germination, such as in the context of seed-based restoration efforts.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70137\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70137\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70137","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海草草甸受到人类活动的严重影响,其中受人类活动影响最大的是Zostera marina L. (Zosteraceae)。以种子为基础的方法是目前修复它们的首选方法,但发芽率低和幼苗建立不良仍然是重大挑战。采用全交叉培养实验,探讨了光谱(白、红、暗)、光周期和赤霉素酸(GA3-0、50、500、1000 mg L-1)对赤霉素种子萌发的综合影响。选择惩罚逻辑回归和Cox比例风险分析来解释低萌发事件并分析萌发的时间动态。我们发现光照条件下,特别是红光和黑暗条件下,GA3显著提高了种子的萌发率。此外,中浓度(50 mg L-1)和高浓度(500 mg L-1)的GA3降低了萌发时间。子叶和叶片组织发育的形态计量学分析表明,这些处理对幼苗发育没有不利影响。研究结果表明,光照和GA3处理能有效提高黄花种子的萌发成功率,减少种子的休眠。种子处理可以减轻胁迫或操纵引起的休眠,并且可以代表一种可行的按需萌发策略,例如在基于种子的恢复努力的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gibberellic acid and light effects on seed germination in the seagrass Zostera marina.

Seagrass meadows have been heavily affected by human activities, with Zostera marina L. (Zosteraceae) being one of the most impacted species. Seed-based methods are currently the preferred approach for their restoration, yet low germination rates and poor seedling establishment remain significant challenges. This study explored the combined effects of light spectra (white, red, and darkness), photoperiod, and gibberellic acid (GA3-0, 50, 500, and 1000 mg L-1) on Z. marina seed germination using a fully crossed incubation experiment. Penalised logistic regression and Cox proportional hazards analysis were chosen to account for low germination events and to analyse the temporal dynamics of germination. We found that light conditions, particularly red light and darkness, when combined with GA3, significantly enhanced germination probability. Furthermore, mid (50 mg L-1) and high (500 mg L-1) GA3 concentrations reduced time-to-germination. Morphometric analysis of the cotyledonary and leaf tissue development indicates no adverse effects of the treatments on seedling development. Our findings suggest that light and GA3 treatments effectively improve germination success and reduce dormancy in Z. marina seeds. Seed treatments can mitigate stress- or manipulation-induced dormancy and can represent a viable strategy for on-demand germination, such as in the context of seed-based restoration efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信