Jie Gao, Fuqian Chen, Chen Wang, Jingbo Yang, Ying Zheng, Bin Liu, Gang Nie, Linyu Zhu, Shuo Wu, Xi Xie, Lelun Jiang
{"title":"用于治疗增生性疤痕的纸电池离子导入微针贴片。","authors":"Jie Gao, Fuqian Chen, Chen Wang, Jingbo Yang, Ying Zheng, Bin Liu, Gang Nie, Linyu Zhu, Shuo Wu, Xi Xie, Lelun Jiang","doi":"10.1038/s41378-024-00823-0","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertrophic scar (HS) is a plaque fibrous and indurated dermal lesion that may cause physical, psychological, and cosmetic challenges for patients. Intralesional injection of triamcinolone acetonide (TA) is commonly used in clinical practice, which cause unbearable pain and uneven drug delivery within HS tissue. Herein, we developed a paper battery powered iontophoresis-driven microneedles patch (PBIMNP) for self-management of HS. The high integration of PBIMNP was achieved by incorporating a paper battery as the power source for iontophoresis. The transdermal drug delivery strategy of PBIMNP combined microneedles and iontophoresis techniques, involving \"pressing and poking, phase transformation, and diffusion and iontophoresis\", which can actively deliver 90.19% drug into the HS tissue with excellent in vitro drug permeation performance. PBIMNP administration effectively reduced the mRNA and protein levels, leading to a decrease in the expression of TGF-β1 and Col I associated with HS formation, demonstrating its efficacy in HS treatment. The microneedles and wearable design endow the PBIMNP as a highly promising platform for self-administration on HS treatment.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"46"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894194/pdf/","citationCount":"0","resultStr":"{\"title\":\"Paper battery powered iontophoresis microneedles patch for hypertrophic scar treatment.\",\"authors\":\"Jie Gao, Fuqian Chen, Chen Wang, Jingbo Yang, Ying Zheng, Bin Liu, Gang Nie, Linyu Zhu, Shuo Wu, Xi Xie, Lelun Jiang\",\"doi\":\"10.1038/s41378-024-00823-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypertrophic scar (HS) is a plaque fibrous and indurated dermal lesion that may cause physical, psychological, and cosmetic challenges for patients. Intralesional injection of triamcinolone acetonide (TA) is commonly used in clinical practice, which cause unbearable pain and uneven drug delivery within HS tissue. Herein, we developed a paper battery powered iontophoresis-driven microneedles patch (PBIMNP) for self-management of HS. The high integration of PBIMNP was achieved by incorporating a paper battery as the power source for iontophoresis. The transdermal drug delivery strategy of PBIMNP combined microneedles and iontophoresis techniques, involving \\\"pressing and poking, phase transformation, and diffusion and iontophoresis\\\", which can actively deliver 90.19% drug into the HS tissue with excellent in vitro drug permeation performance. PBIMNP administration effectively reduced the mRNA and protein levels, leading to a decrease in the expression of TGF-β1 and Col I associated with HS formation, demonstrating its efficacy in HS treatment. The microneedles and wearable design endow the PBIMNP as a highly promising platform for self-administration on HS treatment.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"46\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00823-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00823-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Paper battery powered iontophoresis microneedles patch for hypertrophic scar treatment.
Hypertrophic scar (HS) is a plaque fibrous and indurated dermal lesion that may cause physical, psychological, and cosmetic challenges for patients. Intralesional injection of triamcinolone acetonide (TA) is commonly used in clinical practice, which cause unbearable pain and uneven drug delivery within HS tissue. Herein, we developed a paper battery powered iontophoresis-driven microneedles patch (PBIMNP) for self-management of HS. The high integration of PBIMNP was achieved by incorporating a paper battery as the power source for iontophoresis. The transdermal drug delivery strategy of PBIMNP combined microneedles and iontophoresis techniques, involving "pressing and poking, phase transformation, and diffusion and iontophoresis", which can actively deliver 90.19% drug into the HS tissue with excellent in vitro drug permeation performance. PBIMNP administration effectively reduced the mRNA and protein levels, leading to a decrease in the expression of TGF-β1 and Col I associated with HS formation, demonstrating its efficacy in HS treatment. The microneedles and wearable design endow the PBIMNP as a highly promising platform for self-administration on HS treatment.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.