解锁萌发:菌根菌株和种子来源在驱动广泛分布的陆生兰花种子萌发中的作用。

IF 3.8 2区 生物学 Q2 MYCOLOGY
Zeyu Zhao, Luna Yang, Yaoyao Wang, Xin Qian, Gang Ding, Hans Jacquemyn, Xiaoke Xing
{"title":"解锁萌发:菌根菌株和种子来源在驱动广泛分布的陆生兰花种子萌发中的作用。","authors":"Zeyu Zhao, Luna Yang, Yaoyao Wang, Xin Qian, Gang Ding, Hans Jacquemyn, Xiaoke Xing","doi":"10.1007/s00572-025-01184-w","DOIUrl":null,"url":null,"abstract":"<p><p>Orchids represent an important component of biodiversity in many ecosystems worldwide, notwithstanding their seed germination and distribution may to a large extent be determined and influenced by mycorrhizal fungi. While it is commonly assumed that widespread orchids are mycorrhizal generalists, the degree to which mycorrhizal diversity supports seed germination remains relatively underexplored. In this study, we investigated the role of a variety of Ceratobasidium fungi in supporting seed germination of the widespread terrestrial orchid Gymnadenia conopsea across China. Twelve Ceratobasidium strains isolated from G. conopsea and other orchids were examined for their ability to support germination of G. conopsea seeds collected from twelve sites across China. Of the twelve tested strains, six were able to support seed germination, while the remaining six strains showed no activity. Compatible strains showed a broad phylogenetic breadth, indicating the G. conopsea is capable of initiating associations with a diverse array of Ceratobasidium fungi. However, the six compatible strains differed in their ability to support protocorm formation. Moreover, germination success of seeds collected from different sites differed among Ceratobasidium strains. Seeds from northern China had a significantly higher number of compatible strains (average 5.6) than seeds from southwestern China (average 3.5). Our results suggest that G. conopsea is not only a mycorrhizal generalist in the adult stage but also in the seed germination stage, at least towards Ceratobasidium fungi. However, the significant strain-provenance interactions indicate regional differences in orchid-fungus interactions. These findings are important for improving local population restoration programs and germplasm conservation of this widespread and endangered orchid species.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"18"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking germination: the role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid.\",\"authors\":\"Zeyu Zhao, Luna Yang, Yaoyao Wang, Xin Qian, Gang Ding, Hans Jacquemyn, Xiaoke Xing\",\"doi\":\"10.1007/s00572-025-01184-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orchids represent an important component of biodiversity in many ecosystems worldwide, notwithstanding their seed germination and distribution may to a large extent be determined and influenced by mycorrhizal fungi. While it is commonly assumed that widespread orchids are mycorrhizal generalists, the degree to which mycorrhizal diversity supports seed germination remains relatively underexplored. In this study, we investigated the role of a variety of Ceratobasidium fungi in supporting seed germination of the widespread terrestrial orchid Gymnadenia conopsea across China. Twelve Ceratobasidium strains isolated from G. conopsea and other orchids were examined for their ability to support germination of G. conopsea seeds collected from twelve sites across China. Of the twelve tested strains, six were able to support seed germination, while the remaining six strains showed no activity. Compatible strains showed a broad phylogenetic breadth, indicating the G. conopsea is capable of initiating associations with a diverse array of Ceratobasidium fungi. However, the six compatible strains differed in their ability to support protocorm formation. Moreover, germination success of seeds collected from different sites differed among Ceratobasidium strains. Seeds from northern China had a significantly higher number of compatible strains (average 5.6) than seeds from southwestern China (average 3.5). Our results suggest that G. conopsea is not only a mycorrhizal generalist in the adult stage but also in the seed germination stage, at least towards Ceratobasidium fungi. However, the significant strain-provenance interactions indicate regional differences in orchid-fungus interactions. These findings are important for improving local population restoration programs and germplasm conservation of this widespread and endangered orchid species.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\"35 2\",\"pages\":\"18\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-025-01184-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01184-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

兰花是世界上许多生态系统生物多样性的重要组成部分,尽管它们的种子萌发和分布在很大程度上可能由菌根真菌决定和影响。虽然人们普遍认为广泛分布的兰花是菌根的通才,但菌根多样性对种子萌发的支持程度仍相对未被充分探索。在本研究中,我们研究了多种Ceratobasidium真菌在中国广泛分布的陆生兰花Gymnadenia conopsea种子萌发中的作用。对从中国12个地点采集的龙葵和其他兰花中分离的12株Ceratobasidium菌株支持龙葵种子发芽的能力进行了研究。在12株被试菌株中,6株能够支持种子萌发,而其余6株没有活性。相容菌株显示出广泛的系统发育广度,表明G. conopsea能够与多种角鼻菌真菌启动关联。然而,这六种相容菌株在支持原球茎形成的能力上存在差异。此外,不同地点采集的角鼻菌种子的发芽成功率也存在差异。中国北方种子的亲和株数(平均5.6个)显著高于西南种子(平均3.5个)。我们的结果表明,在成虫期和种子萌发期,至少对Ceratobasidium真菌是一个菌根多面手。然而,显著的菌株-种源互作表明了兰花-真菌互作的区域差异。这些研究结果对改善当地种群恢复计划和种质资源保护具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking germination: the role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid.

Orchids represent an important component of biodiversity in many ecosystems worldwide, notwithstanding their seed germination and distribution may to a large extent be determined and influenced by mycorrhizal fungi. While it is commonly assumed that widespread orchids are mycorrhizal generalists, the degree to which mycorrhizal diversity supports seed germination remains relatively underexplored. In this study, we investigated the role of a variety of Ceratobasidium fungi in supporting seed germination of the widespread terrestrial orchid Gymnadenia conopsea across China. Twelve Ceratobasidium strains isolated from G. conopsea and other orchids were examined for their ability to support germination of G. conopsea seeds collected from twelve sites across China. Of the twelve tested strains, six were able to support seed germination, while the remaining six strains showed no activity. Compatible strains showed a broad phylogenetic breadth, indicating the G. conopsea is capable of initiating associations with a diverse array of Ceratobasidium fungi. However, the six compatible strains differed in their ability to support protocorm formation. Moreover, germination success of seeds collected from different sites differed among Ceratobasidium strains. Seeds from northern China had a significantly higher number of compatible strains (average 5.6) than seeds from southwestern China (average 3.5). Our results suggest that G. conopsea is not only a mycorrhizal generalist in the adult stage but also in the seed germination stage, at least towards Ceratobasidium fungi. However, the significant strain-provenance interactions indicate regional differences in orchid-fungus interactions. These findings are important for improving local population restoration programs and germplasm conservation of this widespread and endangered orchid species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信