一个单体-二聚体开关调节植物腺苷激酶的活性。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
David Jaroslav Kopečný, Armelle Vigouroux, Jakub Bělíček, Martina Kopečná, Radka Končitíková, Jaroslava Friedecká, Václav Mik, Klára Supíková, Jan František Humplík, Marine Le Berre, Stephan Plancqueel, Miroslav Strnad, Klaus von Schwartzenberg, Ondřej Novák, Solange Moréra, David Kopečný
{"title":"一个单体-二聚体开关调节植物腺苷激酶的活性。","authors":"David Jaroslav Kopečný, Armelle Vigouroux, Jakub Bělíček, Martina Kopečná, Radka Končitíková, Jaroslava Friedecká, Václav Mik, Klára Supíková, Jan František Humplík, Marine Le Berre, Stephan Plancqueel, Miroslav Strnad, Klaus von Schwartzenberg, Ondřej Novák, Solange Moréra, David Kopečný","doi":"10.1093/jxb/eraf094","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine undergoes ATP-dependent phosphorylation catalyzed by adenosine kinase (ADK). In plants, ADK also phosphorylates cytokinin ribosides, transport forms of the hormone. Here, we investigated the substrate preferences, oligomeric states and structures of ADKs from moss (Physcomitrella patens) and maize (Zea mays) alongside metabolomic and phenotypic analyses. We showed that dexamethasone-inducible ZmADK overexpressor lines in Arabidopsis can benefit from a higher number of lateral roots and larger root areas under nitrogen starvation. We discovered that maize and moss enzymes can form dimers upon increasing protein concentration, setting them apart from the monomeric human and protozoal ADKs. Structural and kinetic analyses revealed a catalytically inactive unique dimer. Within the dimer, both active sites are mutually blocked. The activity of moss ADKs, exhibiting a higher propensity to dimerize, was tenfold lower compared to maize ADKs. Two monomeric structures in a ternary complex highlight the characteristic transition from an open to a closed state upon substrate binding. This suggests that the oligomeric state switch can modulate the activity of moss ADKs and likely other plant ADKs. Moreover, dimer association represents a novel negative feedback mechanism, helping to maintain steady levels of adenosine and AMP.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A monomer-dimer switch modulates the activity of plant adenosine kinase.\",\"authors\":\"David Jaroslav Kopečný, Armelle Vigouroux, Jakub Bělíček, Martina Kopečná, Radka Končitíková, Jaroslava Friedecká, Václav Mik, Klára Supíková, Jan František Humplík, Marine Le Berre, Stephan Plancqueel, Miroslav Strnad, Klaus von Schwartzenberg, Ondřej Novák, Solange Moréra, David Kopečný\",\"doi\":\"10.1093/jxb/eraf094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adenosine undergoes ATP-dependent phosphorylation catalyzed by adenosine kinase (ADK). In plants, ADK also phosphorylates cytokinin ribosides, transport forms of the hormone. Here, we investigated the substrate preferences, oligomeric states and structures of ADKs from moss (Physcomitrella patens) and maize (Zea mays) alongside metabolomic and phenotypic analyses. We showed that dexamethasone-inducible ZmADK overexpressor lines in Arabidopsis can benefit from a higher number of lateral roots and larger root areas under nitrogen starvation. We discovered that maize and moss enzymes can form dimers upon increasing protein concentration, setting them apart from the monomeric human and protozoal ADKs. Structural and kinetic analyses revealed a catalytically inactive unique dimer. Within the dimer, both active sites are mutually blocked. The activity of moss ADKs, exhibiting a higher propensity to dimerize, was tenfold lower compared to maize ADKs. Two monomeric structures in a ternary complex highlight the characteristic transition from an open to a closed state upon substrate binding. This suggests that the oligomeric state switch can modulate the activity of moss ADKs and likely other plant ADKs. Moreover, dimer association represents a novel negative feedback mechanism, helping to maintain steady levels of adenosine and AMP.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf094\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf094","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

腺苷经过atp依赖性磷酸化,由腺苷激酶(ADK)催化。在植物中,ADK也使细胞分裂素核糖体磷酸化,这是激素的运输形式。本研究通过代谢组学和表型分析,研究了苔藓(Physcomitrella patens)和玉米(Zea mays)中ADKs的底物偏好、寡聚状态和结构。我们发现,在氮饥饿条件下,地塞米松诱导的ZmADK过表达系可以从更多的侧根数量和更大的根面积中获益。我们发现玉米和苔藓酶可以在增加蛋白质浓度时形成二聚体,将它们与人类和原生动物的单体ADKs区分开来。结构和动力学分析表明该二聚体具有催化活性。在二聚体中,两个活性位点相互阻断。与玉米ADKs相比,苔藓ADKs的活性低10倍,表现出更高的二聚化倾向。三元配合物中的两个单体结构在底物结合时突出了从开放到封闭状态的特征转变。这表明寡聚状态开关可以调节苔藓ADKs和其他植物ADKs的活性。此外,二聚体关联代表了一种新的负反馈机制,有助于维持腺苷和AMP的稳定水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A monomer-dimer switch modulates the activity of plant adenosine kinase.

Adenosine undergoes ATP-dependent phosphorylation catalyzed by adenosine kinase (ADK). In plants, ADK also phosphorylates cytokinin ribosides, transport forms of the hormone. Here, we investigated the substrate preferences, oligomeric states and structures of ADKs from moss (Physcomitrella patens) and maize (Zea mays) alongside metabolomic and phenotypic analyses. We showed that dexamethasone-inducible ZmADK overexpressor lines in Arabidopsis can benefit from a higher number of lateral roots and larger root areas under nitrogen starvation. We discovered that maize and moss enzymes can form dimers upon increasing protein concentration, setting them apart from the monomeric human and protozoal ADKs. Structural and kinetic analyses revealed a catalytically inactive unique dimer. Within the dimer, both active sites are mutually blocked. The activity of moss ADKs, exhibiting a higher propensity to dimerize, was tenfold lower compared to maize ADKs. Two monomeric structures in a ternary complex highlight the characteristic transition from an open to a closed state upon substrate binding. This suggests that the oligomeric state switch can modulate the activity of moss ADKs and likely other plant ADKs. Moreover, dimer association represents a novel negative feedback mechanism, helping to maintain steady levels of adenosine and AMP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信