高分辨率,体积扩散加权脑磁共振光谱成像。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zepeng Wang, Bradley P Sutton, Fan Lam
{"title":"高分辨率,体积扩散加权脑磁共振光谱成像。","authors":"Zepeng Wang, Bradley P Sutton, Fan Lam","doi":"10.1002/mrm.30479","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To achieve high-resolution, three-dimensional (3D) quantitative diffusion-weighted MR spectroscopic imaging (DW-MRSI) for molecule-specific microstructural imaging of the brain.</p><p><strong>Methods: </strong>We introduced and integrated several innovative acquisition and processing strategies for DW-MRSI: (a) a new double-spin-echo sequence combining selective excitation, bipolar diffusion encoding, rapid spatiospectral sampling, interleaved water spectroscopic imaging data, and a special sparsely sampled echo-volume-imaging (EVI)-based navigator, (b) a rank-constrained time-resolved reconstruction from the EVI data to capture spatially varying phases, (c) a model-based phase correction for DW-MRSI data, and (d) a multi-b-value subspace-based method for water/lipids removal and spatiospectral reconstruction using learned metabolite subspaces, and e) a hybrid subspace and parametric model-based parameter estimation strategy. Phantom and in vivo experiments were performed to validate the proposed method and demonstrate its ability to map metabolite-specific diffusion parameters in 3D.</p><p><strong>Results: </strong>The proposed method generated reproducible metabolite diffusion coefficient estimates, consistent with those from a standard single-voxel DW spectroscopy (SV-DWS) method. High-SNR multi-molecular mean diffusivity (MD) maps can be obtained at a 6.9  <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\times $$</annotation></semantics> </math> 6.9 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\times $$</annotation></semantics> </math> 7.0 mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mn>3</mn></msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> nominal resolution with large 3D brain coverage. High-resolution (4.4 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\times $$</annotation></semantics> </math> 4.4 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\times $$</annotation></semantics> </math> 5.6 mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> ) metabolite and diffusion coefficient maps can be obtained within 20 mins for the first time. Tissue-dependent metabolite MDs were observed, i.e., larger MDs for NAA, creatine, and choline in white matter than gray matter, with region-specific differences.</p><p><strong>Conclusion: </strong>We demonstrated an unprecedented capability of simultaneous, high-resolution metabolite and diffusion parameter mapping. This imaging capability has strong potential to offer richer molecular and tissue-compartment-specific microstructural information for various clinical and neuroscience applications.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution, volumetric diffusion-weighted MR spectroscopic imaging of the brain.\",\"authors\":\"Zepeng Wang, Bradley P Sutton, Fan Lam\",\"doi\":\"10.1002/mrm.30479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To achieve high-resolution, three-dimensional (3D) quantitative diffusion-weighted MR spectroscopic imaging (DW-MRSI) for molecule-specific microstructural imaging of the brain.</p><p><strong>Methods: </strong>We introduced and integrated several innovative acquisition and processing strategies for DW-MRSI: (a) a new double-spin-echo sequence combining selective excitation, bipolar diffusion encoding, rapid spatiospectral sampling, interleaved water spectroscopic imaging data, and a special sparsely sampled echo-volume-imaging (EVI)-based navigator, (b) a rank-constrained time-resolved reconstruction from the EVI data to capture spatially varying phases, (c) a model-based phase correction for DW-MRSI data, and (d) a multi-b-value subspace-based method for water/lipids removal and spatiospectral reconstruction using learned metabolite subspaces, and e) a hybrid subspace and parametric model-based parameter estimation strategy. Phantom and in vivo experiments were performed to validate the proposed method and demonstrate its ability to map metabolite-specific diffusion parameters in 3D.</p><p><strong>Results: </strong>The proposed method generated reproducible metabolite diffusion coefficient estimates, consistent with those from a standard single-voxel DW spectroscopy (SV-DWS) method. High-SNR multi-molecular mean diffusivity (MD) maps can be obtained at a 6.9  <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\\\times $$</annotation></semantics> </math> 6.9 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\\\times $$</annotation></semantics> </math> 7.0 mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mn>3</mn></msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> nominal resolution with large 3D brain coverage. High-resolution (4.4 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\\\times $$</annotation></semantics> </math> 4.4 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\\\times $$</annotation></semantics> </math> 5.6 mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> ) metabolite and diffusion coefficient maps can be obtained within 20 mins for the first time. Tissue-dependent metabolite MDs were observed, i.e., larger MDs for NAA, creatine, and choline in white matter than gray matter, with region-specific differences.</p><p><strong>Conclusion: </strong>We demonstrated an unprecedented capability of simultaneous, high-resolution metabolite and diffusion parameter mapping. This imaging capability has strong potential to offer richer molecular and tissue-compartment-specific microstructural information for various clinical and neuroscience applications.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30479\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30479","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:实现高分辨率、三维(3D)定量扩散加权磁共振光谱成像(DW-MRSI),用于脑分子特异性微结构成像。方法:我们介绍并整合了几种创新的DW-MRSI采集和处理策略:(a)结合选择性激励、双极扩散编码、快速空间光谱采样、交错水光谱成像数据和基于特殊稀疏采样回波体成像(EVI)导航器的新双旋回波序列,(b)基于EVI数据的秩约束时间分辨重建以捕获空间变化相位,(c)基于模型的DW-MRSI数据相位校正。(d)基于多b值子空间的基于学习代谢物子空间的水/脂类去除和空间光谱重建方法;(e)基于混合子空间和参数模型的参数估计策略。幻影和体内实验验证了所提出的方法,并证明了其在3D中绘制代谢物特异性扩散参数的能力。结果:该方法产生了可重复的代谢物扩散系数估计值,与标准单体素DW光谱(SV-DWS)方法一致。高信噪比多分子平均扩散率(MD)图可以在6.9 × $$ \times $$ 6.9 × $$ \times $$ 7.0 mm 3 $$ {}^3 $$标称分辨率下获得,具有大的3D脑覆盖。首次在20分钟内获得高分辨率(4.4 × $$ \times $$ 4.4 × $$ \times $$ 5.6 mm 3 $$ {}^3 $$)代谢物和扩散系数图。观察到组织依赖性代谢物MDs,即白质中NAA、肌酸和胆碱的MDs大于灰质,且存在区域特异性差异。结论:我们展示了前所未有的同时、高分辨率代谢物和扩散参数绘制能力。这种成像能力具有强大的潜力,为各种临床和神经科学应用提供更丰富的分子和组织室特异性微结构信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution, volumetric diffusion-weighted MR spectroscopic imaging of the brain.

Purpose: To achieve high-resolution, three-dimensional (3D) quantitative diffusion-weighted MR spectroscopic imaging (DW-MRSI) for molecule-specific microstructural imaging of the brain.

Methods: We introduced and integrated several innovative acquisition and processing strategies for DW-MRSI: (a) a new double-spin-echo sequence combining selective excitation, bipolar diffusion encoding, rapid spatiospectral sampling, interleaved water spectroscopic imaging data, and a special sparsely sampled echo-volume-imaging (EVI)-based navigator, (b) a rank-constrained time-resolved reconstruction from the EVI data to capture spatially varying phases, (c) a model-based phase correction for DW-MRSI data, and (d) a multi-b-value subspace-based method for water/lipids removal and spatiospectral reconstruction using learned metabolite subspaces, and e) a hybrid subspace and parametric model-based parameter estimation strategy. Phantom and in vivo experiments were performed to validate the proposed method and demonstrate its ability to map metabolite-specific diffusion parameters in 3D.

Results: The proposed method generated reproducible metabolite diffusion coefficient estimates, consistent with those from a standard single-voxel DW spectroscopy (SV-DWS) method. High-SNR multi-molecular mean diffusivity (MD) maps can be obtained at a 6.9  × $$ \times $$ 6.9 × $$ \times $$ 7.0 mm 3 $$ {}^3 $$ nominal resolution with large 3D brain coverage. High-resolution (4.4 × $$ \times $$ 4.4 × $$ \times $$ 5.6 mm 3 $$ {}^3 $$ ) metabolite and diffusion coefficient maps can be obtained within 20 mins for the first time. Tissue-dependent metabolite MDs were observed, i.e., larger MDs for NAA, creatine, and choline in white matter than gray matter, with region-specific differences.

Conclusion: We demonstrated an unprecedented capability of simultaneous, high-resolution metabolite and diffusion parameter mapping. This imaging capability has strong potential to offer richer molecular and tissue-compartment-specific microstructural information for various clinical and neuroscience applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信