{"title":"在定性研究中推进人工智能驱动的专题分析:皮肤利什曼病数据九种生成模型的比较研究。","authors":"Issam Bennis, Safwane Mouwafaq","doi":"10.1186/s12911-025-02961-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As part of qualitative research, the thematic analysis is time-consuming and technical. The rise of generative artificial intelligence (A.I.), especially large language models, has brought hope in enhancing and partly automating thematic analysis.</p><p><strong>Methods: </strong>The study assessed the relative efficacy of conventional against AI-assisted thematic analysis when investigating the psychosocial impact of cutaneous leishmaniasis (CL) scars. Four hundred forty-eight participant responses from a core study were analysed comparing nine A.I. generative models: Llama 3.1 405B, Claude 3.5 Sonnet, NotebookLM, Gemini 1.5 Advanced Ultra, ChatGPT o1-Pro, ChatGPT o1, GrokV2, DeepSeekV3, Gemini 2.0 Advanced with manual expert analysis. Jamovi software maintained methodological rigour through Cohen's Kappa coefficient calculations for concordance assessment and similarity measurement via Python using Jaccard index computations.</p><p><strong>Results: </strong>Advanced A.I. models showed impressive congruence with reference standards; some even had perfect concordance (Jaccard index = 1.00). Gender-specific analyses demonstrated consistent performance across subgroups, allowing a nuanced understanding of psychosocial consequences. The grounded theory process developed the framework for the fragile circle of vulnerabilities that incorporated new insights into CL-related psychosocial complexity while establishing novel dimensions.</p><p><strong>Conclusions: </strong>This study shows how A.I. can be incorporated in qualitative research methodology, particularly in complex psychosocial analysis. Consequently, the A.I. deep learning models proved to be highly efficient and accurate. These findings imply that the future directions for qualitative research methodology should focus on maintaining analytical rigour through the utilisation of technology using a combination of A.I. capabilities and human expertise following standardised future checklist of reporting full process transparency.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"124"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895178/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing AI-driven thematic analysis in qualitative research: a comparative study of nine generative models on Cutaneous Leishmaniasis data.\",\"authors\":\"Issam Bennis, Safwane Mouwafaq\",\"doi\":\"10.1186/s12911-025-02961-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>As part of qualitative research, the thematic analysis is time-consuming and technical. The rise of generative artificial intelligence (A.I.), especially large language models, has brought hope in enhancing and partly automating thematic analysis.</p><p><strong>Methods: </strong>The study assessed the relative efficacy of conventional against AI-assisted thematic analysis when investigating the psychosocial impact of cutaneous leishmaniasis (CL) scars. Four hundred forty-eight participant responses from a core study were analysed comparing nine A.I. generative models: Llama 3.1 405B, Claude 3.5 Sonnet, NotebookLM, Gemini 1.5 Advanced Ultra, ChatGPT o1-Pro, ChatGPT o1, GrokV2, DeepSeekV3, Gemini 2.0 Advanced with manual expert analysis. Jamovi software maintained methodological rigour through Cohen's Kappa coefficient calculations for concordance assessment and similarity measurement via Python using Jaccard index computations.</p><p><strong>Results: </strong>Advanced A.I. models showed impressive congruence with reference standards; some even had perfect concordance (Jaccard index = 1.00). Gender-specific analyses demonstrated consistent performance across subgroups, allowing a nuanced understanding of psychosocial consequences. The grounded theory process developed the framework for the fragile circle of vulnerabilities that incorporated new insights into CL-related psychosocial complexity while establishing novel dimensions.</p><p><strong>Conclusions: </strong>This study shows how A.I. can be incorporated in qualitative research methodology, particularly in complex psychosocial analysis. Consequently, the A.I. deep learning models proved to be highly efficient and accurate. These findings imply that the future directions for qualitative research methodology should focus on maintaining analytical rigour through the utilisation of technology using a combination of A.I. capabilities and human expertise following standardised future checklist of reporting full process transparency.</p>\",\"PeriodicalId\":9340,\"journal\":{\"name\":\"BMC Medical Informatics and Decision Making\",\"volume\":\"25 1\",\"pages\":\"124\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895178/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Informatics and Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12911-025-02961-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02961-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Advancing AI-driven thematic analysis in qualitative research: a comparative study of nine generative models on Cutaneous Leishmaniasis data.
Background: As part of qualitative research, the thematic analysis is time-consuming and technical. The rise of generative artificial intelligence (A.I.), especially large language models, has brought hope in enhancing and partly automating thematic analysis.
Methods: The study assessed the relative efficacy of conventional against AI-assisted thematic analysis when investigating the psychosocial impact of cutaneous leishmaniasis (CL) scars. Four hundred forty-eight participant responses from a core study were analysed comparing nine A.I. generative models: Llama 3.1 405B, Claude 3.5 Sonnet, NotebookLM, Gemini 1.5 Advanced Ultra, ChatGPT o1-Pro, ChatGPT o1, GrokV2, DeepSeekV3, Gemini 2.0 Advanced with manual expert analysis. Jamovi software maintained methodological rigour through Cohen's Kappa coefficient calculations for concordance assessment and similarity measurement via Python using Jaccard index computations.
Results: Advanced A.I. models showed impressive congruence with reference standards; some even had perfect concordance (Jaccard index = 1.00). Gender-specific analyses demonstrated consistent performance across subgroups, allowing a nuanced understanding of psychosocial consequences. The grounded theory process developed the framework for the fragile circle of vulnerabilities that incorporated new insights into CL-related psychosocial complexity while establishing novel dimensions.
Conclusions: This study shows how A.I. can be incorporated in qualitative research methodology, particularly in complex psychosocial analysis. Consequently, the A.I. deep learning models proved to be highly efficient and accurate. These findings imply that the future directions for qualitative research methodology should focus on maintaining analytical rigour through the utilisation of technology using a combination of A.I. capabilities and human expertise following standardised future checklist of reporting full process transparency.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.