郁金香鳞茎的差异生长和开花能力以及磷脂酰乙醇胺结合蛋白(pebp)的潜在参与。

IF 5.7 2区 生物学 Q1 BIOLOGY
Francesca Bellinazzo, Irene Manders, Bas Heidemann, Manuel Aguirre Bolanos, Evelien Stouten, Jacqueline Busscher, Dolores Abarca, Froukje van der Wal, Marcelo Carnier Dornelas, Gerco C Angenent, Marcel Proveniers, Harm Nijveen, Richard G H Immink
{"title":"郁金香鳞茎的差异生长和开花能力以及磷脂酰乙醇胺结合蛋白(pebp)的潜在参与。","authors":"Francesca Bellinazzo, Irene Manders, Bas Heidemann, Manuel Aguirre Bolanos, Evelien Stouten, Jacqueline Busscher, Dolores Abarca, Froukje van der Wal, Marcelo Carnier Dornelas, Gerco C Angenent, Marcel Proveniers, Harm Nijveen, Richard G H Immink","doi":"10.1186/s13062-025-00625-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tulipa gesneriana reproduces vegetatively by the development of bulb clusters from axillary meristems in the scales of a mother bulb. While part of the daughter bulbs in a cluster develop into large, flowering bulbs, others stay small and vegetative under the same environmental conditions. This study aims to investigate how these different developmental fates are orchestrated.</p><p><strong>Results: </strong>RNA-seq analysis revealed that the overall transcriptomic landscape of the two types of daughter bulbs does not differ substantially, but follows a similar trajectory over time. Nonetheless, the expression levels of genes related to proliferation already differ at early development stages. Surprisingly, at a later stage, transcriptomic changes related to flower induction are detectable in flowering as well as non-flowering bulbs, with some quantitative differences. However, genes linked with floral organ development are differentially expressed, as well as negative regulators of flowering and more basal metabolic processes. In search for the molecular determinants of daughter bulb size and developmental fate, we investigated members of the PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN (PEBP) gene family as candidates. Tulip FLOWERING LOCUS T1 (TgFT1), TgFT2, and TgFT3 are expressed in leaves and leaf-like organs of the mother plant, and their encoded proteins interact with the TCP transcription factor TEOSINTE BRANCHED1 (TgTB1). Therefore, we suggest that these three genes act as 'bulbigens', meaning regulators of axillary meristem outgrowth and hence, daughter bulb size. Furthermore, we found that TgFT2 and TgFT4 could constitute the main florigens in tulips, because of their expression pattern and the binding of their encoding proteins to the bZIP transcription factor FD (TgFD). Moreover, Arabidopsis lines ectopically expressing TgFT2 or TgFT4 flower significantly earlier than the wild type.</p><p><strong>Conclusions: </strong>Differences in the developmental fate of tulip daughter bulbs are established early during development and are linked with differences in cell division and metabolism. The activity of members of the PEBP family, known for their role in flowering and storage organ formation in geophytes, appeared to be associated with the transcriptional switches observed during daughter bulb development. This points towards a functional role of these proteins in governing developmental trajectories underlying the mode of reproduction.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"29"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895272/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential growth and flowering capacity of tulip bulbs and the potential involvement of PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBPs).\",\"authors\":\"Francesca Bellinazzo, Irene Manders, Bas Heidemann, Manuel Aguirre Bolanos, Evelien Stouten, Jacqueline Busscher, Dolores Abarca, Froukje van der Wal, Marcelo Carnier Dornelas, Gerco C Angenent, Marcel Proveniers, Harm Nijveen, Richard G H Immink\",\"doi\":\"10.1186/s13062-025-00625-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tulipa gesneriana reproduces vegetatively by the development of bulb clusters from axillary meristems in the scales of a mother bulb. While part of the daughter bulbs in a cluster develop into large, flowering bulbs, others stay small and vegetative under the same environmental conditions. This study aims to investigate how these different developmental fates are orchestrated.</p><p><strong>Results: </strong>RNA-seq analysis revealed that the overall transcriptomic landscape of the two types of daughter bulbs does not differ substantially, but follows a similar trajectory over time. Nonetheless, the expression levels of genes related to proliferation already differ at early development stages. Surprisingly, at a later stage, transcriptomic changes related to flower induction are detectable in flowering as well as non-flowering bulbs, with some quantitative differences. However, genes linked with floral organ development are differentially expressed, as well as negative regulators of flowering and more basal metabolic processes. In search for the molecular determinants of daughter bulb size and developmental fate, we investigated members of the PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN (PEBP) gene family as candidates. Tulip FLOWERING LOCUS T1 (TgFT1), TgFT2, and TgFT3 are expressed in leaves and leaf-like organs of the mother plant, and their encoded proteins interact with the TCP transcription factor TEOSINTE BRANCHED1 (TgTB1). Therefore, we suggest that these three genes act as 'bulbigens', meaning regulators of axillary meristem outgrowth and hence, daughter bulb size. Furthermore, we found that TgFT2 and TgFT4 could constitute the main florigens in tulips, because of their expression pattern and the binding of their encoding proteins to the bZIP transcription factor FD (TgFD). Moreover, Arabidopsis lines ectopically expressing TgFT2 or TgFT4 flower significantly earlier than the wild type.</p><p><strong>Conclusions: </strong>Differences in the developmental fate of tulip daughter bulbs are established early during development and are linked with differences in cell division and metabolism. The activity of members of the PEBP family, known for their role in flowering and storage organ formation in geophytes, appeared to be associated with the transcriptional switches observed during daughter bulb development. This points towards a functional role of these proteins in governing developmental trajectories underlying the mode of reproduction.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"20 1\",\"pages\":\"29\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895272/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-025-00625-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00625-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:郁金香(Tulipa genereriana)通过母球鳞片腋生分生组织发育成鳞茎簇进行营养繁殖。在相同的环境条件下,当一簇中的部分子球茎发育成大的、有花的球茎时,其他的则保持小的和营养的状态。本研究旨在探讨这些不同的发展命运是如何被精心安排的。结果:RNA-seq分析显示,两种子球茎的整体转录组学景观没有实质性差异,但随着时间的推移遵循相似的轨迹。尽管如此,与增殖相关的基因表达水平在早期发育阶段就已经存在差异。令人惊讶的是,在后期阶段,与开花和非开花鳞茎相关的转录组变化在开花和非开花鳞茎中都可以检测到,但存在一些数量差异。然而,与花器官发育相关的基因,以及开花和更基础的代谢过程的负调节因子,都是差异表达的。为了寻找子代鳞茎大小和发育命运的分子决定因素,我们研究了磷脂酰乙醇胺结合蛋白(PEBP)基因家族的成员作为候选基因。郁金香开花位点T1 (TgFT1)、TgFT2和TgFT3在母体植物的叶片和叶样器官中表达,它们编码的蛋白与TCP转录因子TEOSINTE BRANCHED1 (TgTB1)相互作用。因此,我们认为这三个基因起着“球根”的作用,即调节腋窝分生组织的生长,从而调节子球茎的大小。此外,我们发现TgFT2和TgFT4可能是郁金香的主要致花因子,这是因为它们的表达模式和编码蛋白与bZIP转录因子FD (TgFD)的结合。此外,异位表达TgFT2或TgFT4的拟南芥株系开花时间明显早于野生型。结论:郁金香子代鳞茎发育命运的差异在发育早期就已确定,并与细胞分裂和代谢的差异有关。PEBP家族成员的活性,在地植物的开花和储存器官形成中起着重要作用,似乎与子球茎发育过程中观察到的转录开关有关。这指出了这些蛋白质在控制生殖模式下的发育轨迹中的功能作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential growth and flowering capacity of tulip bulbs and the potential involvement of PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBPs).

Background: Tulipa gesneriana reproduces vegetatively by the development of bulb clusters from axillary meristems in the scales of a mother bulb. While part of the daughter bulbs in a cluster develop into large, flowering bulbs, others stay small and vegetative under the same environmental conditions. This study aims to investigate how these different developmental fates are orchestrated.

Results: RNA-seq analysis revealed that the overall transcriptomic landscape of the two types of daughter bulbs does not differ substantially, but follows a similar trajectory over time. Nonetheless, the expression levels of genes related to proliferation already differ at early development stages. Surprisingly, at a later stage, transcriptomic changes related to flower induction are detectable in flowering as well as non-flowering bulbs, with some quantitative differences. However, genes linked with floral organ development are differentially expressed, as well as negative regulators of flowering and more basal metabolic processes. In search for the molecular determinants of daughter bulb size and developmental fate, we investigated members of the PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN (PEBP) gene family as candidates. Tulip FLOWERING LOCUS T1 (TgFT1), TgFT2, and TgFT3 are expressed in leaves and leaf-like organs of the mother plant, and their encoded proteins interact with the TCP transcription factor TEOSINTE BRANCHED1 (TgTB1). Therefore, we suggest that these three genes act as 'bulbigens', meaning regulators of axillary meristem outgrowth and hence, daughter bulb size. Furthermore, we found that TgFT2 and TgFT4 could constitute the main florigens in tulips, because of their expression pattern and the binding of their encoding proteins to the bZIP transcription factor FD (TgFD). Moreover, Arabidopsis lines ectopically expressing TgFT2 or TgFT4 flower significantly earlier than the wild type.

Conclusions: Differences in the developmental fate of tulip daughter bulbs are established early during development and are linked with differences in cell division and metabolism. The activity of members of the PEBP family, known for their role in flowering and storage organ formation in geophytes, appeared to be associated with the transcriptional switches observed during daughter bulb development. This points towards a functional role of these proteins in governing developmental trajectories underlying the mode of reproduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信