Felix Oladele Okunlola, Abimbola Rafiat Okunlola, Babatunde Oluwafemi Adetuyi, Mahmoud E S Soliman, Athanasios Alexiou, Marios Papadakis, Mohamed N Fawzy, Gaber El-Saber Batiha
{"title":"超越肠道:揭示微生物组对心血管健康的多方面影响。","authors":"Felix Oladele Okunlola, Abimbola Rafiat Okunlola, Babatunde Oluwafemi Adetuyi, Mahmoud E S Soliman, Athanasios Alexiou, Marios Papadakis, Mohamed N Fawzy, Gaber El-Saber Batiha","doi":"10.1016/j.clnesp.2025.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.</p>","PeriodicalId":10352,"journal":{"name":"Clinical nutrition ESPEN","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the Gut: Unraveling the Multifaceted Influence of Microbiome on Cardiovascular Health.\",\"authors\":\"Felix Oladele Okunlola, Abimbola Rafiat Okunlola, Babatunde Oluwafemi Adetuyi, Mahmoud E S Soliman, Athanasios Alexiou, Marios Papadakis, Mohamed N Fawzy, Gaber El-Saber Batiha\",\"doi\":\"10.1016/j.clnesp.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.</p>\",\"PeriodicalId\":10352,\"journal\":{\"name\":\"Clinical nutrition ESPEN\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical nutrition ESPEN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.clnesp.2025.03.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical nutrition ESPEN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.clnesp.2025.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Beyond the Gut: Unraveling the Multifaceted Influence of Microbiome on Cardiovascular Health.
Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.
期刊介绍:
Clinical Nutrition ESPEN is an electronic-only journal and is an official publication of the European Society for Clinical Nutrition and Metabolism (ESPEN). Nutrition and nutritional care have gained wide clinical and scientific interest during the past decades. The increasing knowledge of metabolic disturbances and nutritional assessment in chronic and acute diseases has stimulated rapid advances in design, development and clinical application of nutritional support. The aims of ESPEN are to encourage the rapid diffusion of knowledge and its application in the field of clinical nutrition and metabolism. Published bimonthly, Clinical Nutrition ESPEN focuses on publishing articles on the relationship between nutrition and disease in the setting of basic science and clinical practice. Clinical Nutrition ESPEN is available to all members of ESPEN and to all subscribers of Clinical Nutrition.