超越肠道:揭示微生物组对心血管健康的多方面影响。

IF 2.9 Q3 NUTRITION & DIETETICS
Felix Oladele Okunlola, Abimbola Rafiat Okunlola, Babatunde Oluwafemi Adetuyi, Mahmoud E S Soliman, Athanasios Alexiou, Marios Papadakis, Mohamed N Fawzy, Gaber El-Saber Batiha
{"title":"超越肠道:揭示微生物组对心血管健康的多方面影响。","authors":"Felix Oladele Okunlola, Abimbola Rafiat Okunlola, Babatunde Oluwafemi Adetuyi, Mahmoud E S Soliman, Athanasios Alexiou, Marios Papadakis, Mohamed N Fawzy, Gaber El-Saber Batiha","doi":"10.1016/j.clnesp.2025.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.</p>","PeriodicalId":10352,"journal":{"name":"Clinical nutrition ESPEN","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the Gut: Unraveling the Multifaceted Influence of Microbiome on Cardiovascular Health.\",\"authors\":\"Felix Oladele Okunlola, Abimbola Rafiat Okunlola, Babatunde Oluwafemi Adetuyi, Mahmoud E S Soliman, Athanasios Alexiou, Marios Papadakis, Mohamed N Fawzy, Gaber El-Saber Batiha\",\"doi\":\"10.1016/j.clnesp.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.</p>\",\"PeriodicalId\":10352,\"journal\":{\"name\":\"Clinical nutrition ESPEN\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical nutrition ESPEN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.clnesp.2025.03.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical nutrition ESPEN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.clnesp.2025.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond the Gut: Unraveling the Multifaceted Influence of Microbiome on Cardiovascular Health.

Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical nutrition ESPEN
Clinical nutrition ESPEN NUTRITION & DIETETICS-
CiteScore
4.90
自引率
3.30%
发文量
512
期刊介绍: Clinical Nutrition ESPEN is an electronic-only journal and is an official publication of the European Society for Clinical Nutrition and Metabolism (ESPEN). Nutrition and nutritional care have gained wide clinical and scientific interest during the past decades. The increasing knowledge of metabolic disturbances and nutritional assessment in chronic and acute diseases has stimulated rapid advances in design, development and clinical application of nutritional support. The aims of ESPEN are to encourage the rapid diffusion of knowledge and its application in the field of clinical nutrition and metabolism. Published bimonthly, Clinical Nutrition ESPEN focuses on publishing articles on the relationship between nutrition and disease in the setting of basic science and clinical practice. Clinical Nutrition ESPEN is available to all members of ESPEN and to all subscribers of Clinical Nutrition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信