IF 0.8 3区 数学 Q2 MATHEMATICS
Piotr Borodulin-Nadzieja, Sebastian Jachimek, Anna Pelczar-Barwacz
{"title":"On the spaces dual to combinatorial Banach spaces","authors":"Piotr Borodulin-Nadzieja,&nbsp;Sebastian Jachimek,&nbsp;Anna Pelczar-Barwacz","doi":"10.1002/mana.202300303","DOIUrl":null,"url":null,"abstract":"<p>We present quasi-Banach spaces which are closely related to the duals of combinatorial Banach spaces. More precisely, for a compact family <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> of finite subsets of <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math> we define a quasi-norm <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <mi>F</mi>\n </msup>\n <annotation>$\\Vert \\cdot \\Vert ^\\mathcal {F}$</annotation>\n </semantics></math> whose Banach envelope is the dual norm for the combinatorial space generated by <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>. Such quasi-norms seem to be much easier to handle than the dual norms and yet the quasi-Banach spaces induced by them share many properties with the dual spaces. We show that the quasi-Banach spaces induced by large families (in the sense of Lopez-Abad and Todorcevic) are <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\ell _1$</annotation>\n </semantics></math>-saturated and do not have the Schur property. In particular, this holds for the Schreier families.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"998-1017"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300303","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了与组合巴拿赫空间对偶密切相关的准巴拿赫空间。更准确地说,对于ω $\omega$的有限子集的紧凑族F $mathcal {F}$,我们定义了一个准规范 ∥ - ∥ F $\Vert \cdot \Vert ^\mathcal {F}$,它的巴拿赫包络是由F $\mathcal {F}$生成的组合空间的对偶规范。这种准规范似乎比对偶规范更容易处理,然而由它们诱导的准巴纳赫空间与对偶空间共享许多性质。我们证明,由大家族(在洛佩兹-阿巴德和托多切维奇的意义上)诱导的准巴纳赫空间是ℓ 1 $\ell _1$ -饱和的,不具有舒尔性质。特别是,这对施莱尔族成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the spaces dual to combinatorial Banach spaces

We present quasi-Banach spaces which are closely related to the duals of combinatorial Banach spaces. More precisely, for a compact family F $\mathcal {F}$ of finite subsets of ω $\omega$ we define a quasi-norm · F $\Vert \cdot \Vert ^\mathcal {F}$ whose Banach envelope is the dual norm for the combinatorial space generated by F $\mathcal {F}$ . Such quasi-norms seem to be much easier to handle than the dual norms and yet the quasi-Banach spaces induced by them share many properties with the dual spaces. We show that the quasi-Banach spaces induced by large families (in the sense of Lopez-Abad and Todorcevic) are 1 $\ell _1$ -saturated and do not have the Schur property. In particular, this holds for the Schreier families.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信