关于前等式的线性化和唯一性

IF 0.8 3区 数学 Q2 MATHEMATICS
Karsten Kruse
{"title":"关于前等式的线性化和唯一性","authors":"Karsten Kruse","doi":"10.1002/mana.202400355","DOIUrl":null,"url":null,"abstract":"<p>We study strong linearizations and the uniqueness of preduals of locally convex Hausdorff spaces of scalar-valued functions. Strong linearizations are special preduals. A locally convex Hausdorff space <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {F}(\\Omega)$</annotation>\n </semantics></math> of scalar-valued functions on a nonempty set <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> is said to admit a <i>strong linearization</i> if there are a locally convex Hausdorff space <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>, a map <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>:</mo>\n <mi>Ω</mi>\n <mo>→</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$\\delta: \\Omega \\rightarrow Y$</annotation>\n </semantics></math>, and a topological isomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>:</mo>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msubsup>\n <mi>Y</mi>\n <mi>b</mi>\n <mo>′</mo>\n </msubsup>\n </mrow>\n <annotation>$T: \\mathcal {F}(\\Omega)\\rightarrow Y_{b}^{\\prime }$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>(</mo>\n <mi>f</mi>\n <mo>)</mo>\n <mo>∘</mo>\n <mi>δ</mi>\n <mo>=</mo>\n <mi>f</mi>\n </mrow>\n <annotation>$T(f)\\circ \\delta = f$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>∈</mo>\n <mi>F</mi>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f\\in \\mathcal {F}(\\Omega)$</annotation>\n </semantics></math>. We give sufficient conditions that allow us to lift strong linearizations from the scalar-valued to the vector-valued case, covering many previous results on linearizations, and use them to characterize the bornological spaces <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {F}(\\Omega)$</annotation>\n </semantics></math> with (strongly) unique predual in certain classes of locally convex Hausdorff spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"955-975"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400355","citationCount":"0","resultStr":"{\"title\":\"On linearization and uniqueness of preduals\",\"authors\":\"Karsten Kruse\",\"doi\":\"10.1002/mana.202400355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study strong linearizations and the uniqueness of preduals of locally convex Hausdorff spaces of scalar-valued functions. Strong linearizations are special preduals. A locally convex Hausdorff space <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {F}(\\\\Omega)$</annotation>\\n </semantics></math> of scalar-valued functions on a nonempty set <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> is said to admit a <i>strong linearization</i> if there are a locally convex Hausdorff space <span></span><math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$Y$</annotation>\\n </semantics></math>, a map <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mo>:</mo>\\n <mi>Ω</mi>\\n <mo>→</mo>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$\\\\delta: \\\\Omega \\\\rightarrow Y$</annotation>\\n </semantics></math>, and a topological isomorphism <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo>:</mo>\\n <mi>F</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <msubsup>\\n <mi>Y</mi>\\n <mi>b</mi>\\n <mo>′</mo>\\n </msubsup>\\n </mrow>\\n <annotation>$T: \\\\mathcal {F}(\\\\Omega)\\\\rightarrow Y_{b}^{\\\\prime }$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>)</mo>\\n <mo>∘</mo>\\n <mi>δ</mi>\\n <mo>=</mo>\\n <mi>f</mi>\\n </mrow>\\n <annotation>$T(f)\\\\circ \\\\delta = f$</annotation>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>∈</mo>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f\\\\in \\\\mathcal {F}(\\\\Omega)$</annotation>\\n </semantics></math>. We give sufficient conditions that allow us to lift strong linearizations from the scalar-valued to the vector-valued case, covering many previous results on linearizations, and use them to characterize the bornological spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {F}(\\\\Omega)$</annotation>\\n </semantics></math> with (strongly) unique predual in certain classes of locally convex Hausdorff spaces.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 3\",\"pages\":\"955-975\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400355\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400355\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400355","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了标量值函数局部凸Hausdorff空间的强线性化和前似的唯一性。强线性化是特殊的前等式。如果存在局部凸Hausdorff空间Y,则非空集Ω $\Omega$上标量函数的局部凸Hausdorff空间F (Ω) $\mathcal {F}(\Omega)$承认强线性化$Y$,映射δ: Ω→Y $\delta: \Omega \rightarrow Y$,拓扑同构T:F (Ω)→Y b ' $T: \mathcal {F}(\Omega)\rightarrow Y_{b}^{\prime }$使得T (F)°δ = f $T(f)\circ \delta = f$对于所有f∈f (Ω) $f\in \mathcal {F}(\Omega)$。我们给出了充分条件,使我们能够将强线性化从标量值的情况提升到向量值的情况,涵盖了许多之前关于线性化的结果,并利用它们来表征在某些局部凸Hausdorff空间中具有(强)唯一前偶的bornological空间F (Ω) $\mathcal {F}(\Omega)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On linearization and uniqueness of preduals

On linearization and uniqueness of preduals

We study strong linearizations and the uniqueness of preduals of locally convex Hausdorff spaces of scalar-valued functions. Strong linearizations are special preduals. A locally convex Hausdorff space F ( Ω ) $\mathcal {F}(\Omega)$ of scalar-valued functions on a nonempty set Ω $\Omega$ is said to admit a strong linearization if there are a locally convex Hausdorff space Y $Y$ , a map δ : Ω Y $\delta: \Omega \rightarrow Y$ , and a topological isomorphism T : F ( Ω ) Y b $T: \mathcal {F}(\Omega)\rightarrow Y_{b}^{\prime }$ such that T ( f ) δ = f $T(f)\circ \delta = f$ for all f F ( Ω ) $f\in \mathcal {F}(\Omega)$ . We give sufficient conditions that allow us to lift strong linearizations from the scalar-valued to the vector-valued case, covering many previous results on linearizations, and use them to characterize the bornological spaces F ( Ω ) $\mathcal {F}(\Omega)$ with (strongly) unique predual in certain classes of locally convex Hausdorff spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信