最大度为3的图的大小拉姆齐数

IF 1 2区 数学 Q1 MATHEMATICS
Nemanja Draganić, Kalina Petrova
{"title":"最大度为3的图的大小拉姆齐数","authors":"Nemanja Draganić,&nbsp;Kalina Petrova","doi":"10.1112/jlms.70116","DOIUrl":null,"url":null,"abstract":"<p>The size-Ramsey number <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>r</mi>\n <mo>̂</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\hat{r}(H)$</annotation>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> is the smallest number of edges a (host) graph <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> can have, such that for any red/blue colouring of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, there is a monochromatic copy of <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. Recently, Conlon, Nenadov and Trujić showed that if <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> is a graph on <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> vertices and maximum degree three, then <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>r</mi>\n <mo>̂</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>8</mn>\n <mo>/</mo>\n <mn>5</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\hat{r}(H) = O(n^{8/5})$</annotation>\n </semantics></math>, improving upon the upper bound of <span></span><math>\n <semantics>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>5</mn>\n <mo>/</mo>\n <mn>3</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$n^{5/3 + o(1)}$</annotation>\n </semantics></math> by Kohayakawa, Rödl, Schacht and Szemerédi. In this paper, we show that <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>r</mi>\n <mo>̂</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩽</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\hat{r}(H)\\leqslant n^{3/2+o(1)}$</annotation>\n </semantics></math>. While the previously used host graphs were vanilla binomial random graphs, we prove our result using a novel host graph construction. Our bound hits a natural barrier of the existing methods.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70116","citationCount":"0","resultStr":"{\"title\":\"Size-Ramsey numbers of graphs with maximum degree three\",\"authors\":\"Nemanja Draganić,&nbsp;Kalina Petrova\",\"doi\":\"10.1112/jlms.70116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The size-Ramsey number <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>r</mi>\\n <mo>̂</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\hat{r}(H)$</annotation>\\n </semantics></math> of a graph <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> is the smallest number of edges a (host) graph <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> can have, such that for any red/blue colouring of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>, there is a monochromatic copy of <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. Recently, Conlon, Nenadov and Trujić showed that if <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> is a graph on <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> vertices and maximum degree three, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>r</mi>\\n <mo>̂</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>8</mn>\\n <mo>/</mo>\\n <mn>5</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\hat{r}(H) = O(n^{8/5})$</annotation>\\n </semantics></math>, improving upon the upper bound of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>5</mn>\\n <mo>/</mo>\\n <mn>3</mn>\\n <mo>+</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <annotation>$n^{5/3 + o(1)}$</annotation>\\n </semantics></math> by Kohayakawa, Rödl, Schacht and Szemerédi. In this paper, we show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>r</mi>\\n <mo>̂</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>⩽</mo>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\hat{r}(H)\\\\leqslant n^{3/2+o(1)}$</annotation>\\n </semantics></math>. While the previously used host graphs were vanilla binomial random graphs, we prove our result using a novel host graph construction. Our bound hits a natural barrier of the existing methods.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70116\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70116\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70116","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图H $H$的大小拉姆齐数r³(H) $\hat{r}(H)$是一个(主机)图的最小边数G $G$可以有,因此对于任何红色/蓝色的G $G$,在G $G$中都有一个单色的H $H$副本。最近,Conlon, Nenadov和trujiki证明,如果H $H$是一个有n $n$个顶点且最大次为3的图,那么r³(H) = 0 (n 8) /5) $\hat{r}(H) = O(n^{8/5})$;由Kohayakawa、Rödl、Schacht和szemersamudi改进了n 5 / 3 + o (1) $n^{5/3 + o(1)}$的上界。在本文中,我们证明了r³(H)≤n3 / 2 + 0(1) $\hat{r}(H)\leqslant n^{3/2+o(1)}$。虽然以前使用的主机图是普通的二项随机图,但我们使用一种新的主机图构造来证明我们的结果。我们的边界遇到了现有方法的自然障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Size-Ramsey numbers of graphs with maximum degree three

Size-Ramsey numbers of graphs with maximum degree three

The size-Ramsey number r ̂ ( H ) $\hat{r}(H)$ of a graph H $H$ is the smallest number of edges a (host) graph G $G$ can have, such that for any red/blue colouring of G $G$ , there is a monochromatic copy of H $H$ in G $G$ . Recently, Conlon, Nenadov and Trujić showed that if H $H$ is a graph on n $n$ vertices and maximum degree three, then r ̂ ( H ) = O ( n 8 / 5 ) $\hat{r}(H) = O(n^{8/5})$ , improving upon the upper bound of n 5 / 3 + o ( 1 ) $n^{5/3 + o(1)}$ by Kohayakawa, Rödl, Schacht and Szemerédi. In this paper, we show that r ̂ ( H ) n 3 / 2 + o ( 1 ) $\hat{r}(H)\leqslant n^{3/2+o(1)}$ . While the previously used host graphs were vanilla binomial random graphs, we prove our result using a novel host graph construction. Our bound hits a natural barrier of the existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信