{"title":"最大度为3的图的大小拉姆齐数","authors":"Nemanja Draganić, Kalina Petrova","doi":"10.1112/jlms.70116","DOIUrl":null,"url":null,"abstract":"<p>The size-Ramsey number <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>r</mi>\n <mo>̂</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\hat{r}(H)$</annotation>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> is the smallest number of edges a (host) graph <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> can have, such that for any red/blue colouring of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, there is a monochromatic copy of <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. Recently, Conlon, Nenadov and Trujić showed that if <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> is a graph on <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> vertices and maximum degree three, then <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>r</mi>\n <mo>̂</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>8</mn>\n <mo>/</mo>\n <mn>5</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\hat{r}(H) = O(n^{8/5})$</annotation>\n </semantics></math>, improving upon the upper bound of <span></span><math>\n <semantics>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>5</mn>\n <mo>/</mo>\n <mn>3</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$n^{5/3 + o(1)}$</annotation>\n </semantics></math> by Kohayakawa, Rödl, Schacht and Szemerédi. In this paper, we show that <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>r</mi>\n <mo>̂</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩽</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\hat{r}(H)\\leqslant n^{3/2+o(1)}$</annotation>\n </semantics></math>. While the previously used host graphs were vanilla binomial random graphs, we prove our result using a novel host graph construction. Our bound hits a natural barrier of the existing methods.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70116","citationCount":"0","resultStr":"{\"title\":\"Size-Ramsey numbers of graphs with maximum degree three\",\"authors\":\"Nemanja Draganić, Kalina Petrova\",\"doi\":\"10.1112/jlms.70116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The size-Ramsey number <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>r</mi>\\n <mo>̂</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\hat{r}(H)$</annotation>\\n </semantics></math> of a graph <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> is the smallest number of edges a (host) graph <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> can have, such that for any red/blue colouring of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>, there is a monochromatic copy of <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. Recently, Conlon, Nenadov and Trujić showed that if <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> is a graph on <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> vertices and maximum degree three, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>r</mi>\\n <mo>̂</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>8</mn>\\n <mo>/</mo>\\n <mn>5</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\hat{r}(H) = O(n^{8/5})$</annotation>\\n </semantics></math>, improving upon the upper bound of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>5</mn>\\n <mo>/</mo>\\n <mn>3</mn>\\n <mo>+</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <annotation>$n^{5/3 + o(1)}$</annotation>\\n </semantics></math> by Kohayakawa, Rödl, Schacht and Szemerédi. In this paper, we show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>r</mi>\\n <mo>̂</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>⩽</mo>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\hat{r}(H)\\\\leqslant n^{3/2+o(1)}$</annotation>\\n </semantics></math>. While the previously used host graphs were vanilla binomial random graphs, we prove our result using a novel host graph construction. Our bound hits a natural barrier of the existing methods.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70116\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70116\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70116","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Size-Ramsey numbers of graphs with maximum degree three
The size-Ramsey number of a graph is the smallest number of edges a (host) graph can have, such that for any red/blue colouring of , there is a monochromatic copy of in . Recently, Conlon, Nenadov and Trujić showed that if is a graph on vertices and maximum degree three, then , improving upon the upper bound of by Kohayakawa, Rödl, Schacht and Szemerédi. In this paper, we show that . While the previously used host graphs were vanilla binomial random graphs, we prove our result using a novel host graph construction. Our bound hits a natural barrier of the existing methods.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.