运动神经元胞体上GABA和甘氨酸突触释放促进运动轴突再生

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Ryan L. Wood, Paula M. Calvo, William M. McCallum, Arthur W. English, Francisco J. Alvarez
{"title":"运动神经元胞体上GABA和甘氨酸突触释放促进运动轴突再生","authors":"Ryan L. Wood,&nbsp;Paula M. Calvo,&nbsp;William M. McCallum,&nbsp;Arthur W. English,&nbsp;Francisco J. Alvarez","doi":"10.1111/ejn.70045","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Motor axon regeneration after traumatic nerve injuries is a slow process that adversely influences patient outcomes because muscle reinnervation delays result in irreversible muscle atrophy and suboptimal axon regeneration. This advocates for investigating methods to accelerate motor axon growth. Electrical nerve stimulation and exercise both enhance motor axon regeneration in rodents and patients, but these interventions cannot always be easily implemented. A roadblock to uncover novel therapeutic approaches based on the effects of activity is the lack of understanding of the synaptic drives responsible for activity-mediated facilitation of axon regeneration. We hypothesized that the relevant excitatory inputs facilitating axon regrowth originate in GABA/glycine synapses, which become depolarizing after downregulation of the potassium chloride cotransporter 2 in motoneurons following axotomy. To test this, we injected tetanus toxin (TeTx) into the tibialis anterior (TA) muscle of mice to block the release of GABA/glycine specifically onto TA motoneurons. Thereafter, we axotomized all sciatic motoneurons by nerve crush and analyzed the time courses of muscle reinnervation in TeTx-treated (TA) and untreated (lateral gastrocnemius [LG]) motoneurons. Muscle reinnervation was slower in TA motoneurons with blocked GABA/glycine synapses, as measured by recovery of M responses and anatomical reinnervation of neuromuscular junctions. Post hoc immunohistochemistry confirmed the removal of the vesicle-associated membrane proteins 1 and 2 by TeTx activity, specifically from inhibitory synapses. These proteins are necessary for the exocytotic release of neurotransmitters. Therefore, we conclude that GABA/glycine neurotransmission on regenerating motoneurons facilitates axon growth and muscle reinnervation, and we discuss possible interventions to modulate these inputs on regenerating motoneurons.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GABA and Glycine Synaptic Release on Axotomized Motoneuron Cell Bodies Promotes Motor Axon Regeneration\",\"authors\":\"Ryan L. Wood,&nbsp;Paula M. Calvo,&nbsp;William M. McCallum,&nbsp;Arthur W. English,&nbsp;Francisco J. Alvarez\",\"doi\":\"10.1111/ejn.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Motor axon regeneration after traumatic nerve injuries is a slow process that adversely influences patient outcomes because muscle reinnervation delays result in irreversible muscle atrophy and suboptimal axon regeneration. This advocates for investigating methods to accelerate motor axon growth. Electrical nerve stimulation and exercise both enhance motor axon regeneration in rodents and patients, but these interventions cannot always be easily implemented. A roadblock to uncover novel therapeutic approaches based on the effects of activity is the lack of understanding of the synaptic drives responsible for activity-mediated facilitation of axon regeneration. We hypothesized that the relevant excitatory inputs facilitating axon regrowth originate in GABA/glycine synapses, which become depolarizing after downregulation of the potassium chloride cotransporter 2 in motoneurons following axotomy. To test this, we injected tetanus toxin (TeTx) into the tibialis anterior (TA) muscle of mice to block the release of GABA/glycine specifically onto TA motoneurons. Thereafter, we axotomized all sciatic motoneurons by nerve crush and analyzed the time courses of muscle reinnervation in TeTx-treated (TA) and untreated (lateral gastrocnemius [LG]) motoneurons. Muscle reinnervation was slower in TA motoneurons with blocked GABA/glycine synapses, as measured by recovery of M responses and anatomical reinnervation of neuromuscular junctions. Post hoc immunohistochemistry confirmed the removal of the vesicle-associated membrane proteins 1 and 2 by TeTx activity, specifically from inhibitory synapses. These proteins are necessary for the exocytotic release of neurotransmitters. Therefore, we conclude that GABA/glycine neurotransmission on regenerating motoneurons facilitates axon growth and muscle reinnervation, and we discuss possible interventions to modulate these inputs on regenerating motoneurons.</p>\\n </div>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"61 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

外伤性神经损伤后的运动轴突再生是一个缓慢的过程,对患者的预后有不利影响,因为肌肉神经再生延迟会导致不可逆的肌肉萎缩和次优的轴突再生。这提倡研究加速运动轴突生长的方法。神经电刺激和运动都能促进啮齿动物和患者的运动轴突再生,但这些干预措施并不总是容易实施。发现基于活动效应的新治疗方法的一个障碍是缺乏对负责活动介导的轴突再生促进的突触驱动的理解。我们假设促进轴突再生的相关兴奋输入源于GABA/甘氨酸突触,在轴突切除后运动神经元中氯化钾共转运蛋白2下调后,该突触开始去极化。为了验证这一点,我们将破伤风毒素(TeTx)注射到小鼠胫骨前肌(TA)中,以阻断GABA/甘氨酸特异性释放到TA运动神经元上。然后,我们用神经挤压法切开所有坐骨运动神经元,分析tetx治疗组(TA)和未治疗组(腓肠肌外侧[LG])运动神经元肌肉再神经支配的时间过程。通过M反应的恢复和神经肌肉连接的解剖性再神经支配来测量,GABA/甘氨酸突触阻断的TA运动神经元的肌肉再神经支配较慢。事后免疫组化证实了TeTx活性去除囊泡相关膜蛋白1和2,特别是来自抑制性突触。这些蛋白质是神经递质的胞外释放所必需的。因此,我们得出结论,再生运动神经元上的GABA/甘氨酸神经传递促进轴突生长和肌肉神经再生,并讨论了调节这些输入对再生运动神经元的可能干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GABA and Glycine Synaptic Release on Axotomized Motoneuron Cell Bodies Promotes Motor Axon Regeneration

GABA and Glycine Synaptic Release on Axotomized Motoneuron Cell Bodies Promotes Motor Axon Regeneration

Motor axon regeneration after traumatic nerve injuries is a slow process that adversely influences patient outcomes because muscle reinnervation delays result in irreversible muscle atrophy and suboptimal axon regeneration. This advocates for investigating methods to accelerate motor axon growth. Electrical nerve stimulation and exercise both enhance motor axon regeneration in rodents and patients, but these interventions cannot always be easily implemented. A roadblock to uncover novel therapeutic approaches based on the effects of activity is the lack of understanding of the synaptic drives responsible for activity-mediated facilitation of axon regeneration. We hypothesized that the relevant excitatory inputs facilitating axon regrowth originate in GABA/glycine synapses, which become depolarizing after downregulation of the potassium chloride cotransporter 2 in motoneurons following axotomy. To test this, we injected tetanus toxin (TeTx) into the tibialis anterior (TA) muscle of mice to block the release of GABA/glycine specifically onto TA motoneurons. Thereafter, we axotomized all sciatic motoneurons by nerve crush and analyzed the time courses of muscle reinnervation in TeTx-treated (TA) and untreated (lateral gastrocnemius [LG]) motoneurons. Muscle reinnervation was slower in TA motoneurons with blocked GABA/glycine synapses, as measured by recovery of M responses and anatomical reinnervation of neuromuscular junctions. Post hoc immunohistochemistry confirmed the removal of the vesicle-associated membrane proteins 1 and 2 by TeTx activity, specifically from inhibitory synapses. These proteins are necessary for the exocytotic release of neurotransmitters. Therefore, we conclude that GABA/glycine neurotransmission on regenerating motoneurons facilitates axon growth and muscle reinnervation, and we discuss possible interventions to modulate these inputs on regenerating motoneurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信