{"title":"缺血性心肌病中一种新的二硫中毒相关诊断基因标记和差异表达验证","authors":"Xin Tan, Shuai Xu, Yiyao Zeng, Fengyi Yu, Zhen Qin, Ge Zhang, Jili Fan, Xiaohong Bo, Junnan Tang, Huimin Fan, Yafeng Zhou","doi":"10.1111/jcmm.70475","DOIUrl":null,"url":null,"abstract":"<p>Ischaemic cardiomyopathy (IC) predominantly arises from prolonged deprivation of oxygen in the coronary arteries, resulting in compromised cardiac contractility or relaxation. This study investigates the role of disulfidptosis-associated genes (DiGs) in IC. Through the analysis of datasets GSE5406 and GSE57338, we explored the association between DiGs and immune characteristics to identify crucial genes contributing to IC development. The support vector machine model emerged as the most effective, identifying key genes such as MYH9, NUBPL, MYL6, MYH10 and NCKAP1. Validation with independent datasets GSE57345, GSE48166 and single-cell GSE145154 further supported these findings, demonstrating high predictive accuracy. Experimental validation in an IC mouse model, using Western blot, immunohistochemistry and RT-qPCR, confirmed the altered expression of these core genes in myocardial ischaemic regions. This research not only elucidates the significance of DiGs in IC but also underscores the diagnostic potential of identified core genes.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70475","citationCount":"0","resultStr":"{\"title\":\"A Novel Disulfidptosis-Related Diagnostic Gene Signature and Differential Expression Validation in Ischaemic Cardiomyopathy\",\"authors\":\"Xin Tan, Shuai Xu, Yiyao Zeng, Fengyi Yu, Zhen Qin, Ge Zhang, Jili Fan, Xiaohong Bo, Junnan Tang, Huimin Fan, Yafeng Zhou\",\"doi\":\"10.1111/jcmm.70475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ischaemic cardiomyopathy (IC) predominantly arises from prolonged deprivation of oxygen in the coronary arteries, resulting in compromised cardiac contractility or relaxation. This study investigates the role of disulfidptosis-associated genes (DiGs) in IC. Through the analysis of datasets GSE5406 and GSE57338, we explored the association between DiGs and immune characteristics to identify crucial genes contributing to IC development. The support vector machine model emerged as the most effective, identifying key genes such as MYH9, NUBPL, MYL6, MYH10 and NCKAP1. Validation with independent datasets GSE57345, GSE48166 and single-cell GSE145154 further supported these findings, demonstrating high predictive accuracy. Experimental validation in an IC mouse model, using Western blot, immunohistochemistry and RT-qPCR, confirmed the altered expression of these core genes in myocardial ischaemic regions. This research not only elucidates the significance of DiGs in IC but also underscores the diagnostic potential of identified core genes.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 5\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70475\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Disulfidptosis-Related Diagnostic Gene Signature and Differential Expression Validation in Ischaemic Cardiomyopathy
Ischaemic cardiomyopathy (IC) predominantly arises from prolonged deprivation of oxygen in the coronary arteries, resulting in compromised cardiac contractility or relaxation. This study investigates the role of disulfidptosis-associated genes (DiGs) in IC. Through the analysis of datasets GSE5406 and GSE57338, we explored the association between DiGs and immune characteristics to identify crucial genes contributing to IC development. The support vector machine model emerged as the most effective, identifying key genes such as MYH9, NUBPL, MYL6, MYH10 and NCKAP1. Validation with independent datasets GSE57345, GSE48166 and single-cell GSE145154 further supported these findings, demonstrating high predictive accuracy. Experimental validation in an IC mouse model, using Western blot, immunohistochemistry and RT-qPCR, confirmed the altered expression of these core genes in myocardial ischaemic regions. This research not only elucidates the significance of DiGs in IC but also underscores the diagnostic potential of identified core genes.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.