欧几里德空间中具有漂移的拉普拉斯算子的解所定义的调和分析算子的L p$ L^p$有界性

IF 0.8 3区 数学 Q2 MATHEMATICS
Jorge J. Betancor, Juan C. Fariña, Lourdes Rodríguez-Mesa
{"title":"欧几里德空间中具有漂移的拉普拉斯算子的解所定义的调和分析算子的L p$ L^p$有界性","authors":"Jorge J. Betancor,&nbsp;Juan C. Fariña,&nbsp;Lourdes Rodríguez-Mesa","doi":"10.1002/mana.202400212","DOIUrl":null,"url":null,"abstract":"<p>We consider the Laplacian with drift in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> defined by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mi>ν</mi>\n </msub>\n <mo>=</mo>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>n</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mfrac>\n <msup>\n <mi>∂</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mi>∂</mi>\n <msubsup>\n <mi>x</mi>\n <mi>i</mi>\n <mn>2</mn>\n </msubsup>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mn>2</mn>\n <msub>\n <mi>ν</mi>\n <mi>i</mi>\n </msub>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <msub>\n <mi>x</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n </mfrac>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta _\\nu = \\sum _{i=1}^n(\\frac{\\partial ^2}{\\partial x_i^2} + 2 \\nu _i\\frac{\\partial }{\\partial {x_i}})$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>ν</mi>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ν</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>ν</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>∖</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$\\nu =(\\nu _1,\\ldots ,\\nu _n)\\in \\mathbb {R}^n\\setminus \\lbrace 0\\rbrace$</annotation>\n </semantics></math>. This operator is self-adjoint with respect to the locally doubling measure <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>μ</mi>\n <mi>ν</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mn>2</mn>\n <mo>⟨</mo>\n <mi>ν</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mo>⟩</mo>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>x</mi>\n </mrow>\n <annotation>$d\\mu _\\nu (x)=e^{2\\langle \\nu,x\\rangle }dx$</annotation>\n </semantics></math>. We analyze the boundedness on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>μ</mi>\n <mi>ν</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(\\mathbb {R}^n,\\mu _\\nu)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\le p&lt;\\infty$</annotation>\n </semantics></math>, of maximal operators, Littlewood–Paley functions, and variation and oscillation operators defined by the family <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>{</mo>\n <msubsup>\n <mi>A</mi>\n <mrow>\n <mi>ν</mi>\n <mo>,</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mi>k</mi>\n </msubsup>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>t</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mo>{</mo>\n <msup>\n <mi>t</mi>\n <mi>k</mi>\n </msup>\n <msubsup>\n <mi>∂</mi>\n <mi>t</mi>\n <mi>k</mi>\n </msubsup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>I</mi>\n <mo>−</mo>\n <mi>t</mi>\n <msub>\n <mi>Δ</mi>\n <mi>ν</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mi>M</mi>\n </mrow>\n </msup>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>t</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\lbrace A^k_{\\nu,M,t}\\rbrace _{t&gt;0}=\\lbrace t^k\\partial ^k_t(I-t\\Delta _\\nu)^{-M}\\rbrace _{t&gt;0}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$M&gt;0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$k\\in \\mathbb {N}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"849-870"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L\\n p\\n \\n $L^p$\\n -boundedness properties for some harmonic analysis operators defined by resolvents for a Laplacian with drift in Euclidean spaces\",\"authors\":\"Jorge J. Betancor,&nbsp;Juan C. Fariña,&nbsp;Lourdes Rodríguez-Mesa\",\"doi\":\"10.1002/mana.202400212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Laplacian with drift in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> defined by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mi>ν</mi>\\n </msub>\\n <mo>=</mo>\\n <msubsup>\\n <mo>∑</mo>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>n</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mfrac>\\n <msup>\\n <mi>∂</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mi>∂</mi>\\n <msubsup>\\n <mi>x</mi>\\n <mi>i</mi>\\n <mn>2</mn>\\n </msubsup>\\n </mrow>\\n </mfrac>\\n <mo>+</mo>\\n <mn>2</mn>\\n <msub>\\n <mi>ν</mi>\\n <mi>i</mi>\\n </msub>\\n <mfrac>\\n <mi>∂</mi>\\n <mrow>\\n <mi>∂</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Delta _\\\\nu = \\\\sum _{i=1}^n(\\\\frac{\\\\partial ^2}{\\\\partial x_i^2} + 2 \\\\nu _i\\\\frac{\\\\partial }{\\\\partial {x_i}})$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ν</mi>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ν</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>ν</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∖</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\nu =(\\\\nu _1,\\\\ldots ,\\\\nu _n)\\\\in \\\\mathbb {R}^n\\\\setminus \\\\lbrace 0\\\\rbrace$</annotation>\\n </semantics></math>. This operator is self-adjoint with respect to the locally doubling measure <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <msub>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mn>2</mn>\\n <mo>⟨</mo>\\n <mi>ν</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mo>⟩</mo>\\n </mrow>\\n </msup>\\n <mi>d</mi>\\n <mi>x</mi>\\n </mrow>\\n <annotation>$d\\\\mu _\\\\nu (x)=e^{2\\\\langle \\\\nu,x\\\\rangle }dx$</annotation>\\n </semantics></math>. We analyze the boundedness on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^p(\\\\mathbb {R}^n,\\\\mu _\\\\nu)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo>&lt;</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1\\\\le p&lt;\\\\infty$</annotation>\\n </semantics></math>, of maximal operators, Littlewood–Paley functions, and variation and oscillation operators defined by the family <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msubsup>\\n <mi>A</mi>\\n <mrow>\\n <mi>ν</mi>\\n <mo>,</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n <mi>k</mi>\\n </msubsup>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msup>\\n <mi>t</mi>\\n <mi>k</mi>\\n </msup>\\n <msubsup>\\n <mi>∂</mi>\\n <mi>t</mi>\\n <mi>k</mi>\\n </msubsup>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>−</mo>\\n <mi>t</mi>\\n <msub>\\n <mi>Δ</mi>\\n <mi>ν</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mi>M</mi>\\n </mrow>\\n </msup>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\lbrace A^k_{\\\\nu,M,t}\\\\rbrace _{t&gt;0}=\\\\lbrace t^k\\\\partial ^k_t(I-t\\\\Delta _\\\\nu)^{-M}\\\\rbrace _{t&gt;0}$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$M&gt;0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$k\\\\in \\\\mathbb {N}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 3\",\"pages\":\"849-870\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400212\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在R n $\mathbb {R}^n$上有漂移的拉普拉斯函数,定义为Δ ν =∑i = 1n∂2∂x I 2 + 2 νI∂∂x I) $\Delta _\nu = \sum _{i=1}^n(\frac{\partial ^2}{\partial x_i^2} + 2 \nu _i\frac{\partial }{\partial {x_i}})$其中ν =(1,…ν n)∈R n∈{0}$\nu =(\nu _1,\ldots ,\nu _n)\in \mathbb {R}^n\setminus \lbrace 0\rbrace$。这个算子对局部加倍测量d μ ν (x) = e2⟨ν是自伴随的,X⟩d X $d\mu _\nu (x)=e^{2\langle \nu,x\rangle }dx$。 我们分析了L p (rn, μ ν) $L^p(\mathbb {R}^n,\mu _\nu)$的有界性,1≤p &lt;∞$1\le p&lt;\infty$,极大算子,Littlewood-Paley函数,以及由A族定义的变{分算子和振荡算子T} & T;{0 = t k∂t k (I−t Δ ν)−M} t &gt;0 $\lbrace A^k_{\nu,M,t}\rbrace _{t&gt;0}=\lbrace t^k\partial ^k_t(I-t\Delta _\nu)^{-M}\rbrace _{t&gt;0}$,其中M &gt;0 $M&gt;0$, k∈N $k\in \mathbb {N}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L p $L^p$ -boundedness properties for some harmonic analysis operators defined by resolvents for a Laplacian with drift in Euclidean spaces

We consider the Laplacian with drift in R n $\mathbb {R}^n$ defined by Δ ν = i = 1 n ( 2 x i 2 + 2 ν i x i ) $\Delta _\nu = \sum _{i=1}^n(\frac{\partial ^2}{\partial x_i^2} + 2 \nu _i\frac{\partial }{\partial {x_i}})$ where ν = ( ν 1 , , ν n ) R n { 0 } $\nu =(\nu _1,\ldots ,\nu _n)\in \mathbb {R}^n\setminus \lbrace 0\rbrace$ . This operator is self-adjoint with respect to the locally doubling measure d μ ν ( x ) = e 2 ν , x d x $d\mu _\nu (x)=e^{2\langle \nu,x\rangle }dx$ . We analyze the boundedness on L p ( R n , μ ν ) $L^p(\mathbb {R}^n,\mu _\nu)$ , 1 p < $1\le p<\infty$ , of maximal operators, Littlewood–Paley functions, and variation and oscillation operators defined by the family { A ν , M , t k } t > 0 = { t k t k ( I t Δ ν ) M } t > 0 $\lbrace A^k_{\nu,M,t}\rbrace _{t>0}=\lbrace t^k\partial ^k_t(I-t\Delta _\nu)^{-M}\rbrace _{t>0}$ , where M > 0 $M>0$ and k N $k\in \mathbb {N}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信