Jorge J. Betancor, Juan C. Fariña, Lourdes Rodríguez-Mesa
求助PDF
{"title":"欧几里德空间中具有漂移的拉普拉斯算子的解所定义的调和分析算子的L p$ L^p$有界性","authors":"Jorge J. Betancor, Juan C. Fariña, Lourdes Rodríguez-Mesa","doi":"10.1002/mana.202400212","DOIUrl":null,"url":null,"abstract":"<p>We consider the Laplacian with drift in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> defined by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mi>ν</mi>\n </msub>\n <mo>=</mo>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>n</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mfrac>\n <msup>\n <mi>∂</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mi>∂</mi>\n <msubsup>\n <mi>x</mi>\n <mi>i</mi>\n <mn>2</mn>\n </msubsup>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mn>2</mn>\n <msub>\n <mi>ν</mi>\n <mi>i</mi>\n </msub>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <msub>\n <mi>x</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n </mfrac>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta _\\nu = \\sum _{i=1}^n(\\frac{\\partial ^2}{\\partial x_i^2} + 2 \\nu _i\\frac{\\partial }{\\partial {x_i}})$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>ν</mi>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ν</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>ν</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>∖</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$\\nu =(\\nu _1,\\ldots ,\\nu _n)\\in \\mathbb {R}^n\\setminus \\lbrace 0\\rbrace$</annotation>\n </semantics></math>. This operator is self-adjoint with respect to the locally doubling measure <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>μ</mi>\n <mi>ν</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mn>2</mn>\n <mo>⟨</mo>\n <mi>ν</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mo>⟩</mo>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>x</mi>\n </mrow>\n <annotation>$d\\mu _\\nu (x)=e^{2\\langle \\nu,x\\rangle }dx$</annotation>\n </semantics></math>. We analyze the boundedness on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>μ</mi>\n <mi>ν</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(\\mathbb {R}^n,\\mu _\\nu)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\le p<\\infty$</annotation>\n </semantics></math>, of maximal operators, Littlewood–Paley functions, and variation and oscillation operators defined by the family <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>{</mo>\n <msubsup>\n <mi>A</mi>\n <mrow>\n <mi>ν</mi>\n <mo>,</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mi>k</mi>\n </msubsup>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>t</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mo>{</mo>\n <msup>\n <mi>t</mi>\n <mi>k</mi>\n </msup>\n <msubsup>\n <mi>∂</mi>\n <mi>t</mi>\n <mi>k</mi>\n </msubsup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>I</mi>\n <mo>−</mo>\n <mi>t</mi>\n <msub>\n <mi>Δ</mi>\n <mi>ν</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mi>M</mi>\n </mrow>\n </msup>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>t</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\lbrace A^k_{\\nu,M,t}\\rbrace _{t>0}=\\lbrace t^k\\partial ^k_t(I-t\\Delta _\\nu)^{-M}\\rbrace _{t>0}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$M>0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$k\\in \\mathbb {N}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"849-870"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L\\n p\\n \\n $L^p$\\n -boundedness properties for some harmonic analysis operators defined by resolvents for a Laplacian with drift in Euclidean spaces\",\"authors\":\"Jorge J. Betancor, Juan C. Fariña, Lourdes Rodríguez-Mesa\",\"doi\":\"10.1002/mana.202400212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Laplacian with drift in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> defined by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mi>ν</mi>\\n </msub>\\n <mo>=</mo>\\n <msubsup>\\n <mo>∑</mo>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>n</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mfrac>\\n <msup>\\n <mi>∂</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mi>∂</mi>\\n <msubsup>\\n <mi>x</mi>\\n <mi>i</mi>\\n <mn>2</mn>\\n </msubsup>\\n </mrow>\\n </mfrac>\\n <mo>+</mo>\\n <mn>2</mn>\\n <msub>\\n <mi>ν</mi>\\n <mi>i</mi>\\n </msub>\\n <mfrac>\\n <mi>∂</mi>\\n <mrow>\\n <mi>∂</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Delta _\\\\nu = \\\\sum _{i=1}^n(\\\\frac{\\\\partial ^2}{\\\\partial x_i^2} + 2 \\\\nu _i\\\\frac{\\\\partial }{\\\\partial {x_i}})$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ν</mi>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ν</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>ν</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∖</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\nu =(\\\\nu _1,\\\\ldots ,\\\\nu _n)\\\\in \\\\mathbb {R}^n\\\\setminus \\\\lbrace 0\\\\rbrace$</annotation>\\n </semantics></math>. This operator is self-adjoint with respect to the locally doubling measure <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <msub>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mn>2</mn>\\n <mo>⟨</mo>\\n <mi>ν</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mo>⟩</mo>\\n </mrow>\\n </msup>\\n <mi>d</mi>\\n <mi>x</mi>\\n </mrow>\\n <annotation>$d\\\\mu _\\\\nu (x)=e^{2\\\\langle \\\\nu,x\\\\rangle }dx$</annotation>\\n </semantics></math>. We analyze the boundedness on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^p(\\\\mathbb {R}^n,\\\\mu _\\\\nu)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo><</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1\\\\le p<\\\\infty$</annotation>\\n </semantics></math>, of maximal operators, Littlewood–Paley functions, and variation and oscillation operators defined by the family <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msubsup>\\n <mi>A</mi>\\n <mrow>\\n <mi>ν</mi>\\n <mo>,</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n <mi>k</mi>\\n </msubsup>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msup>\\n <mi>t</mi>\\n <mi>k</mi>\\n </msup>\\n <msubsup>\\n <mi>∂</mi>\\n <mi>t</mi>\\n <mi>k</mi>\\n </msubsup>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>−</mo>\\n <mi>t</mi>\\n <msub>\\n <mi>Δ</mi>\\n <mi>ν</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mi>M</mi>\\n </mrow>\\n </msup>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\lbrace A^k_{\\\\nu,M,t}\\\\rbrace _{t>0}=\\\\lbrace t^k\\\\partial ^k_t(I-t\\\\Delta _\\\\nu)^{-M}\\\\rbrace _{t>0}$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$M>0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$k\\\\in \\\\mathbb {N}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 3\",\"pages\":\"849-870\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400212\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用