la掺杂锌锰矿结构、电导率、磁性和电化学性能的影响

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
A. Viji, K. Vanasundari, R. Vijayakumar, A. Prakasam
{"title":"la掺杂锌锰矿结构、电导率、磁性和电化学性能的影响","authors":"A. Viji,&nbsp;K. Vanasundari,&nbsp;R. Vijayakumar,&nbsp;A. Prakasam","doi":"10.1007/s10948-025-06930-x","DOIUrl":null,"url":null,"abstract":"<div><p>Sol–gel auto combustion was used to create polycrystalline ZnMn<sub>2-x</sub>La<sub>x</sub>O<sub>4</sub> nanoparticles, where <i>x</i> = 0.0, 0.05, 0.1, and 0.15 zinc manganite. La concentration, structural, electrical conductivity, magnetic, and electrochemical properties were found to be strongly correlated. ZnMn<sub>2</sub>O<sub>4</sub> and other manganese-rich spinels have a tetragonal spinel structure due to the octahedral MnO<sub>6</sub> unit’s Jahn–Teller distortion. ZnMn<sub>2-x</sub>La<sub>x</sub>O<sub>4</sub> oxides progressively change to a cubic spinel structure as more La occurs in the place of manganese. Expanding La substitution causes the lattice parameter <i>c</i> to drop from 9.2178 to 9.2158 A° and the lattice parameter <i>a</i> = <i>b</i> to rise from 5.6869 to 5.9107 A°. For rare-earth dopants such as lanthanum, substitution doping is necessary due to their (La) large ionic radii in comparison to manganese and zinc. Smaller particles would form as a result of doping materials like La form Zn and Mn, which would change particle mobility. Differences between zinc manganite and zinc manganite doped with La may be due to lattice strain and structural disorder. The conductivity value from both pure and (0.15%) doped samples rises from 16.46 × 10<sup>−4</sup> S cm<sup>−1</sup> to 323.89 × 10<sup>−4</sup> S cm<sup>−1</sup> with increasing La substitution. The enhanced electrochemical performance is caused by the formation of a La doped ZnMn<sub>2</sub>O<sub>4</sub> which can suppress the volume expansion during the charge–discharge process.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Structural, Electrical Conductivity, Magnetic, and Electrochemical Properties of La-Doped Zinc Manganite\",\"authors\":\"A. Viji,&nbsp;K. Vanasundari,&nbsp;R. Vijayakumar,&nbsp;A. Prakasam\",\"doi\":\"10.1007/s10948-025-06930-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sol–gel auto combustion was used to create polycrystalline ZnMn<sub>2-x</sub>La<sub>x</sub>O<sub>4</sub> nanoparticles, where <i>x</i> = 0.0, 0.05, 0.1, and 0.15 zinc manganite. La concentration, structural, electrical conductivity, magnetic, and electrochemical properties were found to be strongly correlated. ZnMn<sub>2</sub>O<sub>4</sub> and other manganese-rich spinels have a tetragonal spinel structure due to the octahedral MnO<sub>6</sub> unit’s Jahn–Teller distortion. ZnMn<sub>2-x</sub>La<sub>x</sub>O<sub>4</sub> oxides progressively change to a cubic spinel structure as more La occurs in the place of manganese. Expanding La substitution causes the lattice parameter <i>c</i> to drop from 9.2178 to 9.2158 A° and the lattice parameter <i>a</i> = <i>b</i> to rise from 5.6869 to 5.9107 A°. For rare-earth dopants such as lanthanum, substitution doping is necessary due to their (La) large ionic radii in comparison to manganese and zinc. Smaller particles would form as a result of doping materials like La form Zn and Mn, which would change particle mobility. Differences between zinc manganite and zinc manganite doped with La may be due to lattice strain and structural disorder. The conductivity value from both pure and (0.15%) doped samples rises from 16.46 × 10<sup>−4</sup> S cm<sup>−1</sup> to 323.89 × 10<sup>−4</sup> S cm<sup>−1</sup> with increasing La substitution. The enhanced electrochemical performance is caused by the formation of a La doped ZnMn<sub>2</sub>O<sub>4</sub> which can suppress the volume expansion during the charge–discharge process.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-025-06930-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06930-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶自燃烧法制备多晶ZnMn2-xLaxO4纳米粒子,其中x = 0.0, 0.05, 0.1和0.15锰锌。La浓度与结构、电导率、磁性和电化学性能密切相关。由于八面体MnO6单元的Jahn-Teller畸变,ZnMn2O4和其他富锰尖晶石具有四方尖晶石结构。随着更多的La取代锰,ZnMn2-xLaxO4氧化物逐渐转变为立方尖晶石结构。扩展La取代导致晶格参数c从9.2178 A°下降到9.2158 A°,晶格参数A = b从5.6869 A°上升到5.9107 A°。对于稀土掺杂剂,如镧,由于它们的离子半径比锰和锌大,因此必须进行替代掺杂。由于La形成Zn和Mn等材料的掺杂,会形成更小的颗粒,这将改变颗粒的迁移率。锰锌矿与掺杂镧的锰锌矿之间的差异可能是由于晶格应变和结构紊乱所致。随着La取代量的增加,纯样品和(0.15%)掺杂样品的电导率值从16.46 × 10−4 S cm−1增加到323.89 × 10−4 S cm−1。电化学性能的提高是由于La掺杂ZnMn2O4的形成抑制了充放电过程中的体积膨胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Structural, Electrical Conductivity, Magnetic, and Electrochemical Properties of La-Doped Zinc Manganite

Effect of Structural, Electrical Conductivity, Magnetic, and Electrochemical Properties of La-Doped Zinc Manganite

Sol–gel auto combustion was used to create polycrystalline ZnMn2-xLaxO4 nanoparticles, where x = 0.0, 0.05, 0.1, and 0.15 zinc manganite. La concentration, structural, electrical conductivity, magnetic, and electrochemical properties were found to be strongly correlated. ZnMn2O4 and other manganese-rich spinels have a tetragonal spinel structure due to the octahedral MnO6 unit’s Jahn–Teller distortion. ZnMn2-xLaxO4 oxides progressively change to a cubic spinel structure as more La occurs in the place of manganese. Expanding La substitution causes the lattice parameter c to drop from 9.2178 to 9.2158 A° and the lattice parameter a = b to rise from 5.6869 to 5.9107 A°. For rare-earth dopants such as lanthanum, substitution doping is necessary due to their (La) large ionic radii in comparison to manganese and zinc. Smaller particles would form as a result of doping materials like La form Zn and Mn, which would change particle mobility. Differences between zinc manganite and zinc manganite doped with La may be due to lattice strain and structural disorder. The conductivity value from both pure and (0.15%) doped samples rises from 16.46 × 10−4 S cm−1 to 323.89 × 10−4 S cm−1 with increasing La substitution. The enhanced electrochemical performance is caused by the formation of a La doped ZnMn2O4 which can suppress the volume expansion during the charge–discharge process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信