{"title":"从黑洞中提取能量的爱因斯坦-麦克斯韦标量理论","authors":"Cheng-Yong Zhang, Zehong Zhang, Ruifeng Zheng","doi":"10.1007/s11433-024-2607-1","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, it has been discovered that the nonlinear self-interaction of matter can induce energy extraction from black holes beyond superradiant instability. This process is closely associated with the occurrence of a dynamical first-order transition between different types of static black holes. To explore whether first-order phase transitions invariably lead to energy extraction, we have investigated the evolution of black holes in the Einstein-Maxwell-scalar model with a higher-order coupling. In this model, there are also dynamical first-order phase transitions between black hole solutions. Our findings indicate that energy can only be extracted from a small, stable hairy black hole in this model. However, this energy extraction is more closely related to the growth of the black hole horizon radius, rather than the dynamical transition between different types of black holes. This suggests that a dynamical first-order phase transition does not necessarily result in energy extraction.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of energy from a black hole in Einstein-Maxwell-scalar theory\",\"authors\":\"Cheng-Yong Zhang, Zehong Zhang, Ruifeng Zheng\",\"doi\":\"10.1007/s11433-024-2607-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, it has been discovered that the nonlinear self-interaction of matter can induce energy extraction from black holes beyond superradiant instability. This process is closely associated with the occurrence of a dynamical first-order transition between different types of static black holes. To explore whether first-order phase transitions invariably lead to energy extraction, we have investigated the evolution of black holes in the Einstein-Maxwell-scalar model with a higher-order coupling. In this model, there are also dynamical first-order phase transitions between black hole solutions. Our findings indicate that energy can only be extracted from a small, stable hairy black hole in this model. However, this energy extraction is more closely related to the growth of the black hole horizon radius, rather than the dynamical transition between different types of black holes. This suggests that a dynamical first-order phase transition does not necessarily result in energy extraction.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 5\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2607-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2607-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Extraction of energy from a black hole in Einstein-Maxwell-scalar theory
Recently, it has been discovered that the nonlinear self-interaction of matter can induce energy extraction from black holes beyond superradiant instability. This process is closely associated with the occurrence of a dynamical first-order transition between different types of static black holes. To explore whether first-order phase transitions invariably lead to energy extraction, we have investigated the evolution of black holes in the Einstein-Maxwell-scalar model with a higher-order coupling. In this model, there are also dynamical first-order phase transitions between black hole solutions. Our findings indicate that energy can only be extracted from a small, stable hairy black hole in this model. However, this energy extraction is more closely related to the growth of the black hole horizon radius, rather than the dynamical transition between different types of black holes. This suggests that a dynamical first-order phase transition does not necessarily result in energy extraction.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.