De-Fu Zhu, Hong Wang, Jian Chen, Xin-Hong Xiong, Jia-Xi Cui
{"title":"共价交联聚合物自调节生长的多循环膨胀","authors":"De-Fu Zhu, Hong Wang, Jian Chen, Xin-Hong Xiong, Jia-Xi Cui","doi":"10.1007/s10118-025-3268-z","DOIUrl":null,"url":null,"abstract":"<div><p>Organisms are capable of self-growth through the integration of the nutrients provided by the external environment. This process slows down when they grow. In this study, we mimicked this self-regulated growth <i>via</i> a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles. Using typical covalently crosslinked polymers, such as acrylamide-based hydrogels and HBA-based elastomers, as examples, we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes, but the growth extent becomes smaller with increasing growth cycle until reaching a plateau. In addition to their size, these materials become stiffer and exhibit less swelling ability in solvents. Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 3","pages":"509 - 516"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Cyclic Swelling for Self-Regulated Growth of Covalently Crosslinked Polymers\",\"authors\":\"De-Fu Zhu, Hong Wang, Jian Chen, Xin-Hong Xiong, Jia-Xi Cui\",\"doi\":\"10.1007/s10118-025-3268-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organisms are capable of self-growth through the integration of the nutrients provided by the external environment. This process slows down when they grow. In this study, we mimicked this self-regulated growth <i>via</i> a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles. Using typical covalently crosslinked polymers, such as acrylamide-based hydrogels and HBA-based elastomers, as examples, we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes, but the growth extent becomes smaller with increasing growth cycle until reaching a plateau. In addition to their size, these materials become stiffer and exhibit less swelling ability in solvents. Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 3\",\"pages\":\"509 - 516\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-025-3268-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3268-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Multi-Cyclic Swelling for Self-Regulated Growth of Covalently Crosslinked Polymers
Organisms are capable of self-growth through the integration of the nutrients provided by the external environment. This process slows down when they grow. In this study, we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles. Using typical covalently crosslinked polymers, such as acrylamide-based hydrogels and HBA-based elastomers, as examples, we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes, but the growth extent becomes smaller with increasing growth cycle until reaching a plateau. In addition to their size, these materials become stiffer and exhibit less swelling ability in solvents. Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.