{"title":"一种配备电致变色的酶生物燃料电池系统,结合中空微针阵列在组织液中进行自供电葡萄糖传感","authors":"Nan Xiao, Haotian Li, Zheyuan Fan, Fangfang Luo, Dingxi Lu, Wen Sun, Zhanhong Li, Zifeng Wang, Yutong Han, Zhigang Zhu","doi":"10.1007/s00604-025-07096-y","DOIUrl":null,"url":null,"abstract":"<div><p> A disposable, self-powered enzymatic biofuel cell (BFC) sensor integrated with a hollow microneedle array (HMNA) for glucose monitoring in interstitial fluid (ISF) is reported. The HMNA enables painless and minimally invasive ISF extraction. The BFC uses dehydrogenase (GDH) in conjunction with NAD<sup>+</sup>, diaphorase (DI), and vitamin K<sub>3</sub> (VK<sub>3</sub>) serving as electron transfer mediators as the anode catalyst and Prussian blue (PB) as the electrochromic cathode. Glucose oxidation at the anode generates electrons that cause PB to change the color at the cathode, allowing for visual glucose concentration determination. The open-circuit potential (OCP) of the sensor is 0.14 V, with a maximum power density of 0.07 µW·cm<sup>−2</sup>, at a glucose concentration of 14 mM. The sensor shows good performance in glucose sensing with a linear relationship between the R/B ratio and glucose concentrations ranging from 0 to 14 mM. This disposable device offers a promising approach for non-invasive and self-powered glucose sensing.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electrochromism-equipped enzymatic biofuel cell system combined with hollow microneedle array for self-powered glucose sensing in interstitial fluid\",\"authors\":\"Nan Xiao, Haotian Li, Zheyuan Fan, Fangfang Luo, Dingxi Lu, Wen Sun, Zhanhong Li, Zifeng Wang, Yutong Han, Zhigang Zhu\",\"doi\":\"10.1007/s00604-025-07096-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p> A disposable, self-powered enzymatic biofuel cell (BFC) sensor integrated with a hollow microneedle array (HMNA) for glucose monitoring in interstitial fluid (ISF) is reported. The HMNA enables painless and minimally invasive ISF extraction. The BFC uses dehydrogenase (GDH) in conjunction with NAD<sup>+</sup>, diaphorase (DI), and vitamin K<sub>3</sub> (VK<sub>3</sub>) serving as electron transfer mediators as the anode catalyst and Prussian blue (PB) as the electrochromic cathode. Glucose oxidation at the anode generates electrons that cause PB to change the color at the cathode, allowing for visual glucose concentration determination. The open-circuit potential (OCP) of the sensor is 0.14 V, with a maximum power density of 0.07 µW·cm<sup>−2</sup>, at a glucose concentration of 14 mM. The sensor shows good performance in glucose sensing with a linear relationship between the R/B ratio and glucose concentrations ranging from 0 to 14 mM. This disposable device offers a promising approach for non-invasive and self-powered glucose sensing.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 4\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07096-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07096-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An electrochromism-equipped enzymatic biofuel cell system combined with hollow microneedle array for self-powered glucose sensing in interstitial fluid
A disposable, self-powered enzymatic biofuel cell (BFC) sensor integrated with a hollow microneedle array (HMNA) for glucose monitoring in interstitial fluid (ISF) is reported. The HMNA enables painless and minimally invasive ISF extraction. The BFC uses dehydrogenase (GDH) in conjunction with NAD+, diaphorase (DI), and vitamin K3 (VK3) serving as electron transfer mediators as the anode catalyst and Prussian blue (PB) as the electrochromic cathode. Glucose oxidation at the anode generates electrons that cause PB to change the color at the cathode, allowing for visual glucose concentration determination. The open-circuit potential (OCP) of the sensor is 0.14 V, with a maximum power density of 0.07 µW·cm−2, at a glucose concentration of 14 mM. The sensor shows good performance in glucose sensing with a linear relationship between the R/B ratio and glucose concentrations ranging from 0 to 14 mM. This disposable device offers a promising approach for non-invasive and self-powered glucose sensing.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.