用改进的油水多相过滤半经验模型求不同温度下的相对相渗透率函数

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE
M. A. Zagorovskiy, S. V. Stepanov, A. B. Shabarov
{"title":"用改进的油水多相过滤半经验模型求不同温度下的相对相渗透率函数","authors":"M. A. Zagorovskiy,&nbsp;S. V. Stepanov,&nbsp;A. B. Shabarov","doi":"10.1134/S0869864324040139","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents an updated physical-mathematical model for a stationary flow of a water-oil flow through the porous space of a rock core (this space is described as an array of capillary clusters). Here we consider an isothermal statement of problem: the temperature is the key parameters for fluid properties and for the value of pressure drop caused by interaction between the fluid phases. The developed model ensures calculating the relative permeability at different temperatures; this approach is based on standard laboratory data for core testing and on experimental data for single-phase filtration of the fluid at different temperatures (or substituted with appropriate formulas). This model was applied for calculating the relative phase permeabilities at different temperatures for the case of weakly-cemented rock formation. This sample was taken from one of Siberian oil fields with a high viscosity oil. The numerical study was conducted on the effect of temperature on the flow pattern in a variable cross-section capillary channel. Simulation was conducted using the OpenFOAM platform. The temperature-caused change in fluid properties alleviates the intensity of a train flow and promotes the transition of the train flow to the droplet flow.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 4","pages":"755 - 767"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved semi-empirical model of multiphase filtration of oil and water for obtaining functions of relative phase permeability at different temperatures\",\"authors\":\"M. A. Zagorovskiy,&nbsp;S. V. Stepanov,&nbsp;A. B. Shabarov\",\"doi\":\"10.1134/S0869864324040139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents an updated physical-mathematical model for a stationary flow of a water-oil flow through the porous space of a rock core (this space is described as an array of capillary clusters). Here we consider an isothermal statement of problem: the temperature is the key parameters for fluid properties and for the value of pressure drop caused by interaction between the fluid phases. The developed model ensures calculating the relative permeability at different temperatures; this approach is based on standard laboratory data for core testing and on experimental data for single-phase filtration of the fluid at different temperatures (or substituted with appropriate formulas). This model was applied for calculating the relative phase permeabilities at different temperatures for the case of weakly-cemented rock formation. This sample was taken from one of Siberian oil fields with a high viscosity oil. The numerical study was conducted on the effect of temperature on the flow pattern in a variable cross-section capillary channel. Simulation was conducted using the OpenFOAM platform. The temperature-caused change in fluid properties alleviates the intensity of a train flow and promotes the transition of the train flow to the droplet flow.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":\"31 4\",\"pages\":\"755 - 767\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864324040139\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324040139","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个更新的物理数学模型,用于水-油流通过岩心的多孔空间(该空间被描述为毛细管簇阵列)的固定流动。这里我们考虑等温问题:温度是流体性质的关键参数,也是流体相间相互作用引起的压降值的关键参数。建立的模型保证了不同温度下相对渗透率的计算;这种方法基于岩心测试的标准实验室数据和不同温度下流体单相过滤的实验数据(或用适当的公式代替)。应用该模型计算了弱胶结地层不同温度下的相对相渗透率。该样品取自西伯利亚的一个高粘度油田。对变截面毛细管通道内温度对流动形态的影响进行了数值研究。利用OpenFOAM平台进行仿真。温度引起的流体性质变化减轻了列车流的强度,促进了列车流向液滴流的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved semi-empirical model of multiphase filtration of oil and water for obtaining functions of relative phase permeability at different temperatures

The paper presents an updated physical-mathematical model for a stationary flow of a water-oil flow through the porous space of a rock core (this space is described as an array of capillary clusters). Here we consider an isothermal statement of problem: the temperature is the key parameters for fluid properties and for the value of pressure drop caused by interaction between the fluid phases. The developed model ensures calculating the relative permeability at different temperatures; this approach is based on standard laboratory data for core testing and on experimental data for single-phase filtration of the fluid at different temperatures (or substituted with appropriate formulas). This model was applied for calculating the relative phase permeabilities at different temperatures for the case of weakly-cemented rock formation. This sample was taken from one of Siberian oil fields with a high viscosity oil. The numerical study was conducted on the effect of temperature on the flow pattern in a variable cross-section capillary channel. Simulation was conducted using the OpenFOAM platform. The temperature-caused change in fluid properties alleviates the intensity of a train flow and promotes the transition of the train flow to the droplet flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信