{"title":"核形成块的结构差异重塑了raft介导的聚合诱导的自组装","authors":"Yue-Xi Zhan, Li Zhang, Chun Feng, Jian-Bo Tan","doi":"10.1007/s10118-025-3275-0","DOIUrl":null,"url":null,"abstract":"<div><p>Polymerization-induced self-assembly (PISA) has become one of the most versatile approaches for scalable preparation of linear block copolymer nanoparticles with various morphologies. However, the controlled introduction of branching into the core-forming block and the effect on the morphologies of block copolymer nanoparticles under PISA conditions have rarely been explored. Herein, a series of multifunctional macromolecular chain transfer agents (macro-CTAs) were first synthesized by a two-step green light-activated photoiniferter polymerization using two types of chain transfer monomers (CTMs). These macro-CTAs were then used to mediate reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of styrene (St) to prepare block copolymers with different core-forming block structures and the assemblies. The effect of the core-forming block structure on the morphology of block copolymer nanoparticles was investigated in detail. Transmission electron microscopy (TEM) analysis indicated that the brush-like core-forming block structure facilitated the formation of higher-order morphologies, while the branched core-forming block structure favored the formation of lower-order morphologies. Moreover, it was found that using macro-CTAs with a shorter length also promoted the formation of higher-order morphologies. Finally, structures of block copolymers and the assemblies were further controlled by changing the structure of macro-CTA or using a binary mixture of two different macro-CTAs. We expect that this work not only sheds light on the synthesis of block copolymer nanoparticles but also provide important mechanistic insights into PISA of nonlinear block copolymers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 3","pages":"429 - 438"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Difference in the Core-forming Block Reshapes RAFT-mediated Polymerization-induced Self-assembly\",\"authors\":\"Yue-Xi Zhan, Li Zhang, Chun Feng, Jian-Bo Tan\",\"doi\":\"10.1007/s10118-025-3275-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymerization-induced self-assembly (PISA) has become one of the most versatile approaches for scalable preparation of linear block copolymer nanoparticles with various morphologies. However, the controlled introduction of branching into the core-forming block and the effect on the morphologies of block copolymer nanoparticles under PISA conditions have rarely been explored. Herein, a series of multifunctional macromolecular chain transfer agents (macro-CTAs) were first synthesized by a two-step green light-activated photoiniferter polymerization using two types of chain transfer monomers (CTMs). These macro-CTAs were then used to mediate reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of styrene (St) to prepare block copolymers with different core-forming block structures and the assemblies. The effect of the core-forming block structure on the morphology of block copolymer nanoparticles was investigated in detail. Transmission electron microscopy (TEM) analysis indicated that the brush-like core-forming block structure facilitated the formation of higher-order morphologies, while the branched core-forming block structure favored the formation of lower-order morphologies. Moreover, it was found that using macro-CTAs with a shorter length also promoted the formation of higher-order morphologies. Finally, structures of block copolymers and the assemblies were further controlled by changing the structure of macro-CTA or using a binary mixture of two different macro-CTAs. We expect that this work not only sheds light on the synthesis of block copolymer nanoparticles but also provide important mechanistic insights into PISA of nonlinear block copolymers.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 3\",\"pages\":\"429 - 438\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-025-3275-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3275-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Structural Difference in the Core-forming Block Reshapes RAFT-mediated Polymerization-induced Self-assembly
Polymerization-induced self-assembly (PISA) has become one of the most versatile approaches for scalable preparation of linear block copolymer nanoparticles with various morphologies. However, the controlled introduction of branching into the core-forming block and the effect on the morphologies of block copolymer nanoparticles under PISA conditions have rarely been explored. Herein, a series of multifunctional macromolecular chain transfer agents (macro-CTAs) were first synthesized by a two-step green light-activated photoiniferter polymerization using two types of chain transfer monomers (CTMs). These macro-CTAs were then used to mediate reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of styrene (St) to prepare block copolymers with different core-forming block structures and the assemblies. The effect of the core-forming block structure on the morphology of block copolymer nanoparticles was investigated in detail. Transmission electron microscopy (TEM) analysis indicated that the brush-like core-forming block structure facilitated the formation of higher-order morphologies, while the branched core-forming block structure favored the formation of lower-order morphologies. Moreover, it was found that using macro-CTAs with a shorter length also promoted the formation of higher-order morphologies. Finally, structures of block copolymers and the assemblies were further controlled by changing the structure of macro-CTA or using a binary mixture of two different macro-CTAs. We expect that this work not only sheds light on the synthesis of block copolymer nanoparticles but also provide important mechanistic insights into PISA of nonlinear block copolymers.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.