Pezhman Yousefi, Muhammad Khalid, Vincenzo Petruzzelli, Giovanna Calò
{"title":"基于多模干涉的铌酸锂薄膜功率分路器和合成器设计","authors":"Pezhman Yousefi, Muhammad Khalid, Vincenzo Petruzzelli, Giovanna Calò","doi":"10.1007/s11082-025-08060-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the design of low-loss multimode interference (MMI) couplers is reported. The proposed devices can be used as power splitters or combiners and are based on lithium niobate on insulator (LNOI) technology, a promising emerging platform for the realization of integrated optical devices. We consider 1<span>\\(\\times\\)</span>N MMI splitters and N<span>\\(\\times\\)</span>1 combiners, with N being the number of output/input ports. We define the design and the optimization criteria to achieve the best performances in terms of insertion loss and output power uniformity over a large wavelength range (i.e., from 1500 to 1600 nm). In particular, we investigate seven configurations of MMI couplers with N ranging from 2 to 8. The insertion loss for all the designed MMI couplers with N ranging from 2 to 8 varies from 0.018 to 0.41 dB, while the uniformity for all MMI splitters ranges from 0.020 to 0.335 dB across the considered wavelength range. The impact of the amplitude and phase errors on the transmittance of MMI combiners with N ranging from 2 to 8 input ports shows that the transmittance variation is less than 1.5 <span>\\(\\%\\)</span>, indicating high robustness and reliable performance in various photonic applications. We compare our MMI couplers results with those of the state-of-the-art based on different material platforms, including LNOI, obtaining much lower insertion losses.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11082-025-08060-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Design of thin-film lithium niobate power splitters and combiners based on multimode interference\",\"authors\":\"Pezhman Yousefi, Muhammad Khalid, Vincenzo Petruzzelli, Giovanna Calò\",\"doi\":\"10.1007/s11082-025-08060-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the design of low-loss multimode interference (MMI) couplers is reported. The proposed devices can be used as power splitters or combiners and are based on lithium niobate on insulator (LNOI) technology, a promising emerging platform for the realization of integrated optical devices. We consider 1<span>\\\\(\\\\times\\\\)</span>N MMI splitters and N<span>\\\\(\\\\times\\\\)</span>1 combiners, with N being the number of output/input ports. We define the design and the optimization criteria to achieve the best performances in terms of insertion loss and output power uniformity over a large wavelength range (i.e., from 1500 to 1600 nm). In particular, we investigate seven configurations of MMI couplers with N ranging from 2 to 8. The insertion loss for all the designed MMI couplers with N ranging from 2 to 8 varies from 0.018 to 0.41 dB, while the uniformity for all MMI splitters ranges from 0.020 to 0.335 dB across the considered wavelength range. The impact of the amplitude and phase errors on the transmittance of MMI combiners with N ranging from 2 to 8 input ports shows that the transmittance variation is less than 1.5 <span>\\\\(\\\\%\\\\)</span>, indicating high robustness and reliable performance in various photonic applications. We compare our MMI couplers results with those of the state-of-the-art based on different material platforms, including LNOI, obtaining much lower insertion losses.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"57 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11082-025-08060-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-025-08060-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08060-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of thin-film lithium niobate power splitters and combiners based on multimode interference
In this paper, the design of low-loss multimode interference (MMI) couplers is reported. The proposed devices can be used as power splitters or combiners and are based on lithium niobate on insulator (LNOI) technology, a promising emerging platform for the realization of integrated optical devices. We consider 1\(\times\)N MMI splitters and N\(\times\)1 combiners, with N being the number of output/input ports. We define the design and the optimization criteria to achieve the best performances in terms of insertion loss and output power uniformity over a large wavelength range (i.e., from 1500 to 1600 nm). In particular, we investigate seven configurations of MMI couplers with N ranging from 2 to 8. The insertion loss for all the designed MMI couplers with N ranging from 2 to 8 varies from 0.018 to 0.41 dB, while the uniformity for all MMI splitters ranges from 0.020 to 0.335 dB across the considered wavelength range. The impact of the amplitude and phase errors on the transmittance of MMI combiners with N ranging from 2 to 8 input ports shows that the transmittance variation is less than 1.5 \(\%\), indicating high robustness and reliable performance in various photonic applications. We compare our MMI couplers results with those of the state-of-the-art based on different material platforms, including LNOI, obtaining much lower insertion losses.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.