Joseph D. Chiong, Zujhar Singh, Joseph F. Ricardo-Noordberg, Nhat Truong Nguyen and Marek B. Majewski
{"title":"铜(i)双(二亚胺)敏化二氧化钛纳米管阵列光电极用于光电化学水氧化†","authors":"Joseph D. Chiong, Zujhar Singh, Joseph F. Ricardo-Noordberg, Nhat Truong Nguyen and Marek B. Majewski","doi":"10.1039/D4SE01768D","DOIUrl":null,"url":null,"abstract":"<p >Dye-sensitized photoelectrochemical cells (DS-PECs), devices inspired by photosynthesis, are being developed to advance the goal of using the sun as the sole source of energy for converting abundant resources to fuel and valuable chemicals. Herein, we report compact and vertically aligned titanium dioxide nanotubes grown through self-organized electrochemical anodization as semiconducting materials functionalized with a molecular copper(<small>I</small>) bis(diimine)-based acceptor–chromophore–donor to yield a photoanode capable of carrying out oxidative processes. The ability of these dye-sensitized photoanodes to drive oxidative processes is further confirmed photoelectrochemically through activation of a molecular iridium(<small>III</small>) water oxidation pre-catalyst where ultimately a Faradaic efficiency of 84% is found for O<small><sub>2</sub></small> production.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 6","pages":" 1534-1544"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01768d?page=search","citationCount":"0","resultStr":"{\"title\":\"Copper(i) bis(diimine) sensitized titania nanotube array photoelectrodes for photoelectrochemical water oxidation†\",\"authors\":\"Joseph D. Chiong, Zujhar Singh, Joseph F. Ricardo-Noordberg, Nhat Truong Nguyen and Marek B. Majewski\",\"doi\":\"10.1039/D4SE01768D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dye-sensitized photoelectrochemical cells (DS-PECs), devices inspired by photosynthesis, are being developed to advance the goal of using the sun as the sole source of energy for converting abundant resources to fuel and valuable chemicals. Herein, we report compact and vertically aligned titanium dioxide nanotubes grown through self-organized electrochemical anodization as semiconducting materials functionalized with a molecular copper(<small>I</small>) bis(diimine)-based acceptor–chromophore–donor to yield a photoanode capable of carrying out oxidative processes. The ability of these dye-sensitized photoanodes to drive oxidative processes is further confirmed photoelectrochemically through activation of a molecular iridium(<small>III</small>) water oxidation pre-catalyst where ultimately a Faradaic efficiency of 84% is found for O<small><sub>2</sub></small> production.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 6\",\"pages\":\" 1534-1544\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01768d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01768d\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01768d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Copper(i) bis(diimine) sensitized titania nanotube array photoelectrodes for photoelectrochemical water oxidation†
Dye-sensitized photoelectrochemical cells (DS-PECs), devices inspired by photosynthesis, are being developed to advance the goal of using the sun as the sole source of energy for converting abundant resources to fuel and valuable chemicals. Herein, we report compact and vertically aligned titanium dioxide nanotubes grown through self-organized electrochemical anodization as semiconducting materials functionalized with a molecular copper(I) bis(diimine)-based acceptor–chromophore–donor to yield a photoanode capable of carrying out oxidative processes. The ability of these dye-sensitized photoanodes to drive oxidative processes is further confirmed photoelectrochemically through activation of a molecular iridium(III) water oxidation pre-catalyst where ultimately a Faradaic efficiency of 84% is found for O2 production.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.