用聚合物涂层分离器减轻锂硫电池中的多硫化物交叉

R. Blake Nuwayhid, Junghoon Yeom, Hunter O. Ford, Zachary G. Neale, Michael W. Swift, Noam Bernstein, Rachel E. Carter and Jeffrey W. Long
{"title":"用聚合物涂层分离器减轻锂硫电池中的多硫化物交叉","authors":"R. Blake Nuwayhid, Junghoon Yeom, Hunter O. Ford, Zachary G. Neale, Michael W. Swift, Noam Bernstein, Rachel E. Carter and Jeffrey W. Long","doi":"10.1039/D4LF00369A","DOIUrl":null,"url":null,"abstract":"<p >Lithium–sulfur (Li–S) batteries promise high energy density and sustainability advantages by using earth-abundant sulfur as a key component, yet practical performance is limited by the complexity of sulfur-based redox reactions. One key challenge is the dissolution and redistribution of soluble lithium polysulfide (LiPS) intermediates from the sulfur cathode, which leads to irreversible loss of active material, poor cycle life, and high self-discharge rates. To ameliorate this issue, we use initiated chemical vapor deposition (iCVD) to conformally coat conventional polyolefin separators with an ultrathin (40–400 nm) copolymer, poly(divinylbenzene-<em>co</em>-(dimethylaminomethyl)styrene). This pDVB-<em>co</em>-DMAMS copolymer is designed with amine functionalities to interact with LiPSs and mitigate cathode-to-anode crossover, while DVB comonomer units serve as cross-linkers that improve mechanical integrity. We evaluate the electrochemical properties of prototype Li–S cells that include pDVB-<em>co</em>-DMAMS-coated separators and sulfur-infused carbon nanofoam paper cathodes. Separators with the thickest pDVB-<em>co</em>-DMAMS coating (400 nm) provide extended protection against self-discharge, while 40 nm pDVB-<em>co</em>-DMAMS coatings enable the highest overall rate capability and cycling stability while still maintaining reasonably low self-discharge rates. Post-cycling analysis of anode, separator, and cathode components, in conjunction with computational efforts, confirms that pDVB-<em>co</em>-DMAMS delays LiPSs crossover through chemical adsorption in the polymer-coated separator. The pDVB-<em>co</em>-DMAMS-coated separators also interact with Li metal anode to form favorable chemical speciation at the solid-electrolyte interphase that stabilizes the Li surface for Li–S cell operation.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 2","pages":" 472-483"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00369a?page=search","citationCount":"0","resultStr":"{\"title\":\"Mitigating polysulfide crossover in lithium–sulfur batteries with polymer-coated separators†\",\"authors\":\"R. Blake Nuwayhid, Junghoon Yeom, Hunter O. Ford, Zachary G. Neale, Michael W. Swift, Noam Bernstein, Rachel E. Carter and Jeffrey W. Long\",\"doi\":\"10.1039/D4LF00369A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium–sulfur (Li–S) batteries promise high energy density and sustainability advantages by using earth-abundant sulfur as a key component, yet practical performance is limited by the complexity of sulfur-based redox reactions. One key challenge is the dissolution and redistribution of soluble lithium polysulfide (LiPS) intermediates from the sulfur cathode, which leads to irreversible loss of active material, poor cycle life, and high self-discharge rates. To ameliorate this issue, we use initiated chemical vapor deposition (iCVD) to conformally coat conventional polyolefin separators with an ultrathin (40–400 nm) copolymer, poly(divinylbenzene-<em>co</em>-(dimethylaminomethyl)styrene). This pDVB-<em>co</em>-DMAMS copolymer is designed with amine functionalities to interact with LiPSs and mitigate cathode-to-anode crossover, while DVB comonomer units serve as cross-linkers that improve mechanical integrity. We evaluate the electrochemical properties of prototype Li–S cells that include pDVB-<em>co</em>-DMAMS-coated separators and sulfur-infused carbon nanofoam paper cathodes. Separators with the thickest pDVB-<em>co</em>-DMAMS coating (400 nm) provide extended protection against self-discharge, while 40 nm pDVB-<em>co</em>-DMAMS coatings enable the highest overall rate capability and cycling stability while still maintaining reasonably low self-discharge rates. Post-cycling analysis of anode, separator, and cathode components, in conjunction with computational efforts, confirms that pDVB-<em>co</em>-DMAMS delays LiPSs crossover through chemical adsorption in the polymer-coated separator. The pDVB-<em>co</em>-DMAMS-coated separators also interact with Li metal anode to form favorable chemical speciation at the solid-electrolyte interphase that stabilizes the Li surface for Li–S cell operation.</p>\",\"PeriodicalId\":101138,\"journal\":{\"name\":\"RSC Applied Interfaces\",\"volume\":\" 2\",\"pages\":\" 472-483\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00369a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d4lf00369a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d4lf00369a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池(li -硫电池)通过使用地球上丰富的硫作为关键成分,有望实现高能量密度和可持续性优势,但实际性能受到硫基氧化还原反应复杂性的限制。其中一个关键挑战是硫阴极中可溶性多硫化锂(LiPS)中间体的溶解和再分布,这会导致活性物质的不可逆损失,循环寿命差,自放电率高。为了改善这一问题,我们使用引发化学气相沉积(iCVD)技术在常规聚烯烃分离器上涂覆超薄(40-400 nm)共聚物聚(二乙烯基苯-co-(二甲氨基甲基)苯乙烯)。这种pdvb -共dmams共聚物具有胺功能,可以与LiPSs相互作用,减轻阴极到阳极的交叉,而DVB共聚物单元作为交联剂,可以提高机械完整性。我们评估了包括pdvb -co- dmams涂层隔膜和硫注入碳纳米泡沫纸阴极的原型锂电池的电化学性能。具有最厚的pDVB-co-DMAMS涂层(400 nm)的分离器可提供更长的自放电保护,而40 nm的pDVB-co-DMAMS涂层可提供最高的整体倍率能力和循环稳定性,同时仍保持合理的低自放电率。对阳极、分离器和阴极组件的循环后分析,结合计算结果,证实了pDVB-co-DMAMS通过聚合物涂层分离器中的化学吸附延迟了LiPSs的交叉。pdvb -co- dmams涂层隔膜还与锂金属阳极相互作用,在固-电解质界面形成有利的化学形态,稳定锂离子表面,使锂- s电池运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigating polysulfide crossover in lithium–sulfur batteries with polymer-coated separators†

Mitigating polysulfide crossover in lithium–sulfur batteries with polymer-coated separators†

Lithium–sulfur (Li–S) batteries promise high energy density and sustainability advantages by using earth-abundant sulfur as a key component, yet practical performance is limited by the complexity of sulfur-based redox reactions. One key challenge is the dissolution and redistribution of soluble lithium polysulfide (LiPS) intermediates from the sulfur cathode, which leads to irreversible loss of active material, poor cycle life, and high self-discharge rates. To ameliorate this issue, we use initiated chemical vapor deposition (iCVD) to conformally coat conventional polyolefin separators with an ultrathin (40–400 nm) copolymer, poly(divinylbenzene-co-(dimethylaminomethyl)styrene). This pDVB-co-DMAMS copolymer is designed with amine functionalities to interact with LiPSs and mitigate cathode-to-anode crossover, while DVB comonomer units serve as cross-linkers that improve mechanical integrity. We evaluate the electrochemical properties of prototype Li–S cells that include pDVB-co-DMAMS-coated separators and sulfur-infused carbon nanofoam paper cathodes. Separators with the thickest pDVB-co-DMAMS coating (400 nm) provide extended protection against self-discharge, while 40 nm pDVB-co-DMAMS coatings enable the highest overall rate capability and cycling stability while still maintaining reasonably low self-discharge rates. Post-cycling analysis of anode, separator, and cathode components, in conjunction with computational efforts, confirms that pDVB-co-DMAMS delays LiPSs crossover through chemical adsorption in the polymer-coated separator. The pDVB-co-DMAMS-coated separators also interact with Li metal anode to form favorable chemical speciation at the solid-electrolyte interphase that stabilizes the Li surface for Li–S cell operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信