Cristina S.C. Calheiros , Martina Ilarri , Mariana Godinho , Paula M.L. Castro , Sofia I.A. Pereira
{"title":"雨水池塘浮动处理湿地的生物多样性评估","authors":"Cristina S.C. Calheiros , Martina Ilarri , Mariana Godinho , Paula M.L. Castro , Sofia I.A. Pereira","doi":"10.1016/j.ecoleng.2025.107598","DOIUrl":null,"url":null,"abstract":"<div><div>Floating treatment wetland (FTW) are a nature-based solution delivering a wide range of ecosystem services when applied in water bodies, such as lakes and rivers. They are recognized for delivering biodiversity, aesthetic integration, and water quality enhancement through phytoremediation processes, although research is still needed to go deeper into the processes underlying the performance of these systems and evaluate the extent of biodiversity promotion especially on pond ecosystems. This study aimed to assess the plant establishment and biodiversity associated with an FTW set up in a rural artificial stormwater pond, with a polyculture comprising <em>Iris germanica</em>, <em>Acorus gramineus</em>, <em>Caltha palustris</em>, and <em>Typha latifolia</em> set in a cork agglomerate platform. For this, it was assessed the culturable bacterial communities associated to the floating platform and the rooting system, and the macroinvertebrates associated to the FTW and to the pond margin. Culturable bacterial communities colonizing the floating platform biofilm and the plant rhizosphere were isolated, identified by 16S rRNA, and characterized for their ability to produce plant growth-promoting substances (e.g., indole-acetic acid, siderophores). There was a high bacterial genera diversity associated with the FTW and with the ability to produce plant growth-promoting substances. Bacterial strains with outstanding growth-promoting traits can be used in the future to support phytoremediation strategies or plant resilience to climate change-related abiotic stresses. Regarding the biodiversity of macrofauna, namely macroinvertebrates, associated with FTW, they were mostly from the order Odonata. The FTW attracted mainly individuals of the genus <em>Coenagrion</em>, which represented more than 80 % of the associated fauna. The full life cycle of dragonflies and damselflies occurred in the FTW. These systems proved to be a hotspot of biodiversity supporting water and landscape management plans, besides aesthetics integration. This study gives new insights into broadening the FTW applications in stormwater or prospects to polluted water.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"215 ","pages":"Article 107598"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodiversity assessment in a floating treatment wetland established in a stormwater pond\",\"authors\":\"Cristina S.C. Calheiros , Martina Ilarri , Mariana Godinho , Paula M.L. Castro , Sofia I.A. Pereira\",\"doi\":\"10.1016/j.ecoleng.2025.107598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Floating treatment wetland (FTW) are a nature-based solution delivering a wide range of ecosystem services when applied in water bodies, such as lakes and rivers. They are recognized for delivering biodiversity, aesthetic integration, and water quality enhancement through phytoremediation processes, although research is still needed to go deeper into the processes underlying the performance of these systems and evaluate the extent of biodiversity promotion especially on pond ecosystems. This study aimed to assess the plant establishment and biodiversity associated with an FTW set up in a rural artificial stormwater pond, with a polyculture comprising <em>Iris germanica</em>, <em>Acorus gramineus</em>, <em>Caltha palustris</em>, and <em>Typha latifolia</em> set in a cork agglomerate platform. For this, it was assessed the culturable bacterial communities associated to the floating platform and the rooting system, and the macroinvertebrates associated to the FTW and to the pond margin. Culturable bacterial communities colonizing the floating platform biofilm and the plant rhizosphere were isolated, identified by 16S rRNA, and characterized for their ability to produce plant growth-promoting substances (e.g., indole-acetic acid, siderophores). There was a high bacterial genera diversity associated with the FTW and with the ability to produce plant growth-promoting substances. Bacterial strains with outstanding growth-promoting traits can be used in the future to support phytoremediation strategies or plant resilience to climate change-related abiotic stresses. Regarding the biodiversity of macrofauna, namely macroinvertebrates, associated with FTW, they were mostly from the order Odonata. The FTW attracted mainly individuals of the genus <em>Coenagrion</em>, which represented more than 80 % of the associated fauna. The full life cycle of dragonflies and damselflies occurred in the FTW. These systems proved to be a hotspot of biodiversity supporting water and landscape management plans, besides aesthetics integration. This study gives new insights into broadening the FTW applications in stormwater or prospects to polluted water.</div></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":\"215 \",\"pages\":\"Article 107598\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857425000862\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425000862","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Biodiversity assessment in a floating treatment wetland established in a stormwater pond
Floating treatment wetland (FTW) are a nature-based solution delivering a wide range of ecosystem services when applied in water bodies, such as lakes and rivers. They are recognized for delivering biodiversity, aesthetic integration, and water quality enhancement through phytoremediation processes, although research is still needed to go deeper into the processes underlying the performance of these systems and evaluate the extent of biodiversity promotion especially on pond ecosystems. This study aimed to assess the plant establishment and biodiversity associated with an FTW set up in a rural artificial stormwater pond, with a polyculture comprising Iris germanica, Acorus gramineus, Caltha palustris, and Typha latifolia set in a cork agglomerate platform. For this, it was assessed the culturable bacterial communities associated to the floating platform and the rooting system, and the macroinvertebrates associated to the FTW and to the pond margin. Culturable bacterial communities colonizing the floating platform biofilm and the plant rhizosphere were isolated, identified by 16S rRNA, and characterized for their ability to produce plant growth-promoting substances (e.g., indole-acetic acid, siderophores). There was a high bacterial genera diversity associated with the FTW and with the ability to produce plant growth-promoting substances. Bacterial strains with outstanding growth-promoting traits can be used in the future to support phytoremediation strategies or plant resilience to climate change-related abiotic stresses. Regarding the biodiversity of macrofauna, namely macroinvertebrates, associated with FTW, they were mostly from the order Odonata. The FTW attracted mainly individuals of the genus Coenagrion, which represented more than 80 % of the associated fauna. The full life cycle of dragonflies and damselflies occurred in the FTW. These systems proved to be a hotspot of biodiversity supporting water and landscape management plans, besides aesthetics integration. This study gives new insights into broadening the FTW applications in stormwater or prospects to polluted water.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.