基于多地球物理方法的工程尺度冻土融化特征研究——以青藏高原为例

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Junkai Ge , Huaifeng Sun , Rui Liu , Zhiyou Huang , Bo Tian , Lanbo Liu , Ziqiang Zheng
{"title":"基于多地球物理方法的工程尺度冻土融化特征研究——以青藏高原为例","authors":"Junkai Ge ,&nbsp;Huaifeng Sun ,&nbsp;Rui Liu ,&nbsp;Zhiyou Huang ,&nbsp;Bo Tian ,&nbsp;Lanbo Liu ,&nbsp;Ziqiang Zheng","doi":"10.1016/j.enggeo.2025.108012","DOIUrl":null,"url":null,"abstract":"<div><div>The freeze-thaw cycles in permafrost regions significantly impact infrastructure stability. While satellite sensing provides a broad perspective for engineering site selection, it lacks the in-depth assessments. Geophysical methods can effectively provide valuable insights into the states of permafrost thawing, but any single method has limitations. To address this, we applied an integrated geophysical approach using ground-penetrating radar (GPR), electrical resistivity tomography (ERT), ambient-noise seismic interferometry (ANSI), and Unmanned Aerial Vehicle (UAV)-based infrared imaging to assess permafrost conditions in the Tuotuo River Basin, Qinghai-Tibet Plateau. Our multi-method survey delineated thawed zones and active layers. The results revealed that a large-scale thawed zone was primarily caused by surface heat absorption, rain infiltration, and sandy soil conditions. We also evaluated the strengths and limitations of each geophysical method, demonstrating their complementarity in permafrost detection. These findings provide a valuable reference for geophysical site assessments and help mitigate engineering risks in permafrost areas.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 108012"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permafrost thawing characterization in engineering scale by multi-geophysical methods: A case study from the Tibet Plateau\",\"authors\":\"Junkai Ge ,&nbsp;Huaifeng Sun ,&nbsp;Rui Liu ,&nbsp;Zhiyou Huang ,&nbsp;Bo Tian ,&nbsp;Lanbo Liu ,&nbsp;Ziqiang Zheng\",\"doi\":\"10.1016/j.enggeo.2025.108012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The freeze-thaw cycles in permafrost regions significantly impact infrastructure stability. While satellite sensing provides a broad perspective for engineering site selection, it lacks the in-depth assessments. Geophysical methods can effectively provide valuable insights into the states of permafrost thawing, but any single method has limitations. To address this, we applied an integrated geophysical approach using ground-penetrating radar (GPR), electrical resistivity tomography (ERT), ambient-noise seismic interferometry (ANSI), and Unmanned Aerial Vehicle (UAV)-based infrared imaging to assess permafrost conditions in the Tuotuo River Basin, Qinghai-Tibet Plateau. Our multi-method survey delineated thawed zones and active layers. The results revealed that a large-scale thawed zone was primarily caused by surface heat absorption, rain infiltration, and sandy soil conditions. We also evaluated the strengths and limitations of each geophysical method, demonstrating their complementarity in permafrost detection. These findings provide a valuable reference for geophysical site assessments and help mitigate engineering risks in permafrost areas.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"350 \",\"pages\":\"Article 108012\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795225001085\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225001085","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

冻融循环对冻土区基础设施的稳定性有显著影响。卫星遥感为工程选址提供了广阔的视角,但缺乏深入的评价。地球物理方法可以有效地为永久冻土融化状态提供有价值的见解,但任何一种方法都有局限性。为了解决这一问题,我们采用了综合地球物理方法,包括探地雷达(GPR)、电阻率断层扫描(ERT)、环境噪声地震干涉测量(ANSI)和基于无人机(UAV)的红外成像,对青藏高原沱沱河流域的多年冻土状况进行了评估。我们的多方法调查描绘了解冻区和活动层。结果表明,大尺度解冻区主要是由地表吸热、雨水入渗和沙质土壤条件造成的。我们还评估了每种地球物理方法的优势和局限性,证明了它们在永久冻土探测中的互补性。这些发现为地球物理现场评估提供了有价值的参考,并有助于减轻多年冻土区的工程风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Permafrost thawing characterization in engineering scale by multi-geophysical methods: A case study from the Tibet Plateau
The freeze-thaw cycles in permafrost regions significantly impact infrastructure stability. While satellite sensing provides a broad perspective for engineering site selection, it lacks the in-depth assessments. Geophysical methods can effectively provide valuable insights into the states of permafrost thawing, but any single method has limitations. To address this, we applied an integrated geophysical approach using ground-penetrating radar (GPR), electrical resistivity tomography (ERT), ambient-noise seismic interferometry (ANSI), and Unmanned Aerial Vehicle (UAV)-based infrared imaging to assess permafrost conditions in the Tuotuo River Basin, Qinghai-Tibet Plateau. Our multi-method survey delineated thawed zones and active layers. The results revealed that a large-scale thawed zone was primarily caused by surface heat absorption, rain infiltration, and sandy soil conditions. We also evaluated the strengths and limitations of each geophysical method, demonstrating their complementarity in permafrost detection. These findings provide a valuable reference for geophysical site assessments and help mitigate engineering risks in permafrost areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信