Xiaoqun Cao , Yan Xiang , Yuanfeng Hu , Ming Zhang , Xufeng Xiao , Fengrui Yin , Liangdeng Wang , Meilan Sui , Yuekeng Yao
{"title":"二甲基亚砜通过激活抗氧化和自噬机制,协同减轻镉诱导的白菜氧化损伤","authors":"Xiaoqun Cao , Yan Xiang , Yuanfeng Hu , Ming Zhang , Xufeng Xiao , Fengrui Yin , Liangdeng Wang , Meilan Sui , Yuekeng Yao","doi":"10.1016/j.envexpbot.2025.106122","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) is one of the highly toxic heavy metals that restricts plant growth, affects crop yields, and triggers food crises. Dimethyl sulfoxide (DMSO) is frequently used solvent in biological studies, and its potential application in resistance to Cd toxicity in plants and animals has not been reported. Here, low concentrations of DMSO alone were demonstrated to increase the biomass of pak choi seedlings; more importantly, under Cd stress conditions, DMSO was shown to reduce Cd accumulation, and thereby alleviate Cd-induced damages. Specifically, DMSO could enhance plant defense mechanisms against Cd stress by strengthening the activities of endogenous reactive oxygen species (ROS) -scavenging enzymatic or non-enzymatic antioxidants, regulating the expression of key stress-responsive genes, as well as activating autophagy and apoptosis protection in root cells, thereby scavenging excessive ROS, restoring integration of cell membranes, and conferring tolerance to Cd-induced phytotoxicity. Our results showed that DMSO could play a vital role in mitigating Cd-induced oxidative damage by activating the protective mechanisms generated by the synergistic effects of both autophagy and antioxidants. These findings will help to formulate strategies to mitigate Cd contamination and to ensure the safety of cabbage production, an important vegetable source.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"232 ","pages":"Article 106122"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimethyl sulfoxide synergistically mitigates cadmium-induced oxidative damage in pak choi by activating antioxidant and autophagy mechanisms\",\"authors\":\"Xiaoqun Cao , Yan Xiang , Yuanfeng Hu , Ming Zhang , Xufeng Xiao , Fengrui Yin , Liangdeng Wang , Meilan Sui , Yuekeng Yao\",\"doi\":\"10.1016/j.envexpbot.2025.106122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cadmium (Cd) is one of the highly toxic heavy metals that restricts plant growth, affects crop yields, and triggers food crises. Dimethyl sulfoxide (DMSO) is frequently used solvent in biological studies, and its potential application in resistance to Cd toxicity in plants and animals has not been reported. Here, low concentrations of DMSO alone were demonstrated to increase the biomass of pak choi seedlings; more importantly, under Cd stress conditions, DMSO was shown to reduce Cd accumulation, and thereby alleviate Cd-induced damages. Specifically, DMSO could enhance plant defense mechanisms against Cd stress by strengthening the activities of endogenous reactive oxygen species (ROS) -scavenging enzymatic or non-enzymatic antioxidants, regulating the expression of key stress-responsive genes, as well as activating autophagy and apoptosis protection in root cells, thereby scavenging excessive ROS, restoring integration of cell membranes, and conferring tolerance to Cd-induced phytotoxicity. Our results showed that DMSO could play a vital role in mitigating Cd-induced oxidative damage by activating the protective mechanisms generated by the synergistic effects of both autophagy and antioxidants. These findings will help to formulate strategies to mitigate Cd contamination and to ensure the safety of cabbage production, an important vegetable source.</div></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":\"232 \",\"pages\":\"Article 106122\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847225000395\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225000395","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dimethyl sulfoxide synergistically mitigates cadmium-induced oxidative damage in pak choi by activating antioxidant and autophagy mechanisms
Cadmium (Cd) is one of the highly toxic heavy metals that restricts plant growth, affects crop yields, and triggers food crises. Dimethyl sulfoxide (DMSO) is frequently used solvent in biological studies, and its potential application in resistance to Cd toxicity in plants and animals has not been reported. Here, low concentrations of DMSO alone were demonstrated to increase the biomass of pak choi seedlings; more importantly, under Cd stress conditions, DMSO was shown to reduce Cd accumulation, and thereby alleviate Cd-induced damages. Specifically, DMSO could enhance plant defense mechanisms against Cd stress by strengthening the activities of endogenous reactive oxygen species (ROS) -scavenging enzymatic or non-enzymatic antioxidants, regulating the expression of key stress-responsive genes, as well as activating autophagy and apoptosis protection in root cells, thereby scavenging excessive ROS, restoring integration of cell membranes, and conferring tolerance to Cd-induced phytotoxicity. Our results showed that DMSO could play a vital role in mitigating Cd-induced oxidative damage by activating the protective mechanisms generated by the synergistic effects of both autophagy and antioxidants. These findings will help to formulate strategies to mitigate Cd contamination and to ensure the safety of cabbage production, an important vegetable source.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.